用matlab实现神经网络的城市交通流量预测。主要以大脑生理变化过程为基础、模仿大脑的结构和功能
上传时间: 2017-04-07
上传用户:qwe1234
生理参数的用户界面,用于ARM开发的生理参数仪
上传时间: 2013-12-25
上传用户:ynzfm
用于通过C实现李氏指数的计算,分析生理数据
上传时间: 2014-11-02
上传用户:huannan88
通过手术实例研究大脑语言区病变手术中神经电生理的变化,取得了比较好的效果,对研究大脑语言区的人有较大帮助
上传时间: 2017-08-21
上传用户:wendy15
电生理入门教程
标签: 电生理
上传时间: 2015-03-06
上传用户:fewj0929
随着生活水平的提高,人们越来越关注自己的身体健康,血压是反映人体生理状况的最重要指标之一,正常的血压是保证身体健康的重要条件。 另外血压也是重症病人监护的重要指标,准确、及时地监测血压,对于了解病情、诊断疾病和保障危重病人安全都极为重要。因此,研制高性能的血压监控系统具有重要的现实意义。 针对以上所述,本文提出了一种采用远程血压监控系统的解决方案,它融合计算机技术、测控技术和网络通讯技术为一体,使电子血压系统实现网络化。本系统将采集到的血压信息经处理后显示到液晶屏上,同时将此信息以TCP/IP的方式发送到网络上,这就是本设计的目的所在。 本论文在开始介绍了人体生理信号的特点及其测量条件之后,详细研究分析了血压测量原理以及舒张压和收缩压的判别。论文的重点放在系统硬件和软件两个方面的设计。在硬件方面,以ARM Cortex-M3内核的处理器LM3S8962作为控制器(内部集成有A/D转换器和以太网控制器等),使得硬件系统的设计简单化。整个硬件系统电路由六部分构成:处理器LM3S8962最小系统电路;电源模块:JTAG接口电路:血压检测模块;液晶显示模块;网络接口。其中,血压检测模块是整个系统设计的关键部分和难点部分,它主要是将袖压的直流部分和交流部分分离出来送到A/D转换器。软件方面,这个部分是第四章的系统软件的设计,首先把实时操作系统μC/OS-Ⅱ移植到处理器LM3S8962上,然后讲解了应用程序的设计(由三个部分组成),分别是A/D转换处理程序设计、液晶显示程序设计和网络通讯程序设计。论文的最后对系统的软硬件调试做了简单的介绍以及全文的总结。 关键词:TCP/IP 示波法 舒张压 收缩压 μc/OS-Ⅱ
上传时间: 2013-06-17
上传用户:yph853211
心音信号是人体最重要的生理信号之一,包含心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量生理病理信息。心音信号分析与识别是了解心脏和血管状态的一种不可缺少的手段。本文针对目前该研究领域中存在的分析方法问题和分类识别技术难点展开了深入的研究,内容涉及心音构成的分析、心音信号特征向量的提取、正常心音信号(NM)和房颤(AF)、主动脉回流(AR)、主动脉狭窄(AS)、二尖瓣回流(MR)4种心脏杂音信号的分类识别。本文的工作内容包括以下5个方面: a)心音信号采集与预处理。本文采用自行研制的带有录音机功能的听诊器实现对心音信号的采集。通过对心音信号噪声分析,选用小波降噪作为心音信号的滤波方法。根据实验分析,选择Donoho阈值函数结合多级阈值的方法作为心音信号预处理方案。 b)心音信号时频分析方法。文中采用5种时频分析方法分别对心音信号进行了时频谱特性分析,结果表明:不同的时频分析方法与待分析心音信号的特性有密切关系,即需要在小的交叉项干扰与高的时频分辨率之间作综合的考虑。鉴于此,本文提出了一种自适应锥形核时频(ATF)分析方法,通过实验验证该分布能较好地反映心音信号的时频结构,其性能优于一般锥形核分布(CKD)以及Choi-Williams分布(CWD)、谱图(SPEC)等固定核时频分析方法,从而选择自应锥形核时频分析方法进行心音信号分析。 c)心音信号特征向量提取。根据对3M Littmann() Stethoscopes[31]数据库中标准心音信号的时频分析结果,提取8组特征数据,通过Fihser降维处理方法提取出了实现分类可视化,且最易于分类的心音信号的2维特征向量,作为心音信号分类的特征向量。 d)心音信号分类方法。根据心音信号特征向量组成的散点图,研究了支持向量机核函数、多分类支持向量机的选取方法,同时,基于分类的目的 性和可信性,本文提出以分类精度最大为判断准则的核函数参数与松弛变量的优化方法,建立了心音信号分类的支持向量机模型,选取标准数据库中NM、AF、AR、AS、MR每类心音信号的80组2维特征向量中每类60组数据作为支持向量机的学习样本,对余下的每类20组数据进行测试,得到每类的分类精度(Ar)均为100%,同时对临床上采集的与上述4种同类心脏杂音信号和正常心音信号中每类24个心动周期进行分类实测,分类精度分别为:NM、AF、MR的分类精度均为100%,而AR、AS均为95.83%,验证了该方法的分类有效性。 e)心音信号分析与识别的软件系统。本文以MATLAB语言的可视化功能实现了心音信号分析与识别的软件运行平台构建,可完成对心音信号的读取、预处理,绘制时-频、能量特性的三维图及两维等高线图;同时,利用MATLAB与EXCEL的动态链接,实现对心音信号分析数据的存储以及统计功能;最后,通过对心音信号2维特征向量的分析,实现心音信号的自动识别功能。 本文的研究特色主要体现在心音信号特征向量提取的方法以及多分类支持向量机模型的建立两方面。 综上所述,本文从理论与实践两方面对心音信号进行了深入的研究,主要是采用自适应锥形核时频分析方法提取心音信号特征向量,根据心音信号特征向量组成的散点图,建立心音信号分类的支持向量机模型,并对正常心音信号和4种心脏杂音信号进行了分类研究,取得了较为满意的分类结果,但由于用于分类的心脏杂音信号种类及数据量尚不足,因此,今后的工作重点是采集更多种类的心脏杂音信号,进一步提高心音信号分类精度,使本文研究成果能最终应用于临床心脏量化听诊。 关键词:心音信号,小波降噪,非平稳信号,心脏杂音,信号处理,时频分析,自适应,支持向量机
上传时间: 2013-04-24
上传用户:weixiao99
生物特征识别是指通过计算机,利用人体固有的生理特征,如指纹,静脉来进行个人身份鉴别的技术。由于生物特征唯一性和不变性,使得生物特征识别与传统的方法如数字密码和身份证相比,具有更高的安全性和易用性。传统的高性能自动识别系统大多基于PC平台联机应用,然而在实际应用中往往对自动识别系统要求有更高的便携性和易用性,嵌入式技术的快速发展使得实现这样的系统变为了可能。 生物特征识别系统主要由通用模块的控制系统与非通用模块的图像采集设备与识别算法组成。本文针对通用模块与非通用模块接口问题进行研究和设计,实现了一个工作良好的嵌入式平台。 本课题在设计核心板、扩展板、转接板的硬件基础上,移植实时操作系统Linux,编写各种接口与模块的驱动、多路摄像头切换程序,并很好的解决了摄像头采集生物特征时光强控制问题,为很好的采集到清晰图像提供了一个良好稳定的硬件平台。 本课题所设计的嵌入式系统通过测试,做了大量的实验,并将所采集到的手指静脉图像进行讨论分析,具有实用价值。
上传时间: 2013-06-03
上传用户:lguotao
随着数字化和网络化的发展,传统的门禁系统由于鉴别方式、速度和性能等方面的限制,很难满足安全可靠和网络化的控制需求。由于识别技术的不断成熟,基于人体生理特征的身份识别系统逐渐被人们开始采用,目前,从实用的角度看,指纹识别技术要比其它生物识别技术更安全和方便,这是因为人的指纹具有唯一性、不变性以及贴身性的特点。传统的门禁控制器常采用单片机开发,利用串行通信接口向远程上位机传送数据,多个门禁控制器一般组成RS485网络,通信线路专用且不易于实现网络控制和远程控制,而基于TCP/IP网络通信的门禁系统通过局域网传递数据,很容易实现远程控制和分布式管理。 文中设计了基于指纹识别和以太网的智能网络型门禁控制器。在ARM9和Linux操作系统上采用FPS200指纹传感器采集指纹图像和USB摄像头采集视频图像,以及采用以太网控制器芯片AX88796,实现了基于TCP/IP协议的网络门禁系统。 论文首先分析了门禁系统的研究背景、意义及国内外的发展现状,然后介绍了指纹识别网络门禁系统的总体结构,阐述了系统各个重要功能模块的硬件资源。根据系统的硬件资源搭建了嵌入式Linux的软件平台,移植了相关模块的驱动程序。论文研究了指纹识别算法,包括指纹图像预处理和指纹图像的特征提取和匹配,重点分析了指纹图像分割法,利用灰度梯度和灰度方差的结合设置一个合适的局部阈值对指纹进行分割。然后,阐述了门禁控制系统软件的总体设计,并重点介绍Video4Linux采集图像、指纹图像采集、GoAhead Web Server的应用以及系统运用TCP/IP实现系统门禁控制器和上位机PC之间的网络通信。 系统测试部分介绍了测试环境、测试方法以及测试内容。测试结果表明,本课题设计的指纹识别网络型门禁系统在稳定性、可靠性以及实时性方面达到了较好的效果。文章最后提出了一些在工作中遇到的问题,并对近几年来的一些新的研究趋势做了简单的总结与展望,指出了指纹识别网络型门禁系统未来的研究方向。
上传时间: 2013-07-23
上传用户:pwcsoft
生物识别技术是根据人体自身所固有的生理特征或行为特征来进行身份识别。与传统识别方法相比,生物特征的身份识别技术不存在携带不便、丢失、遗忘等问题。虹膜识别以其精确度高、稳定性好、高独特性、非接触等特点作为一种新兴的生物识别技术使它受到国内外研究人员的重视。 近年虹膜识别理论的发展十分迅速,到目前为止已经有虹膜识别系统投入了商业应用,但大多数此类系统都需要PC作为运行平台而缺乏灵活性。但是嵌入式应用是虹膜识别技术走向实际应用的必然趋势。因此本文提出了一个利用DSP+ARM实现虹膜识别嵌入式应用的一个方案。本系统由6个模块组成:电源管理和监控、虹膜图像采集、虹膜图像处理(DSP)、存储器(SDRAM和FLASH)、人机交互(ARM)以及数据传输部分。 在硬件设计方面介绍了DSP的有关知识和DSP系统硬件设计的过程,讲解了DSP系统各硬件模块的设计与调试。在软件设计方面介绍了利用CCS开发的设计流程和调试经验并且对于如何固化代码使系统硬件自举进行详细阐述,另外还介绍了如何基于WINCE利用ARM系统进行人机界面快速开发。 最后,文章对未来工作方向进行了简要的说明。
上传时间: 2013-04-24
上传用户:hwl453472107