理想变压器
共 23 篇文章
理想变压器 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 23 篇文章,持续更新中。
反激变换器的变压器学习
<p>
对反激变压器漏感的一些认识_漏感与气隙的大小关系不大。耦合系数随着气隙的增大而下降。气隙增大会引起效率降低是因为Ipk的增大,漏感能量增大。气隙增大会引起绕组损耗增大是因为气隙扩散损耗的增大。</p>
<p>
<img alt="" src="http://dl.eeworm.com/ele/img/319641-111230151011N7.jpg" style="width: 17
MT-016 DAC基本架构III:分段DAC
当我们需要设计一个具有特定性能的DAC时,很可能没有任何一种架构是理想的。这种情况下,可以将两个或更多DAC组合成一个更高分辨率的DAC,以获得所需的性能。这些DAC可以是同一类型,也可以是不同类型,各DAC的分辨率无需相同
传输线变压器在射频功率放大器中的应用
<div>
介绍由传输线变压器(又称为魔T 混合网络) 构成功率合成和功率分配的工作原理以及在射频大功率放大器中的应用。<br />
<img alt="" src="http://dl.eeworm.com/ele/img/829019-12021G64640104.jpg" />
径向功率分配合成器的设计
<div>
讨论一种多路径向功率分配合成器的设计及其阻抗匹配问题, 这种功率分配器和合成器合成效率高, 是固态功率合成的理想途径。<br />
<br />
<img alt="" src="http://dl.eeworm.com/ele/img/829019-12021GF526318.jpg" style="width: 486px; height: 237px; " />
一种新型并联混合型有源滤波器的研究
为实现对非线性负载的谐波补偿和功率因数连续调节,采用了一种无变压器并联混合型有源滤波器,阐述了其工作原理。综合考虑成本与滤波效果的情况下选择采用7次单调谐无源滤波器,针对7次单调谐无源滤波器对于5次谐波补偿能力较差的状况,采用了反馈加5次前馈的控制策略.为了进一步对系统的无功功率进行补偿,在原有的反馈控制环节上进行了一定的改进.仿真结果证明了该并联混合性有源滤波工作的有效性。<br />
<img
High-Speed Digital System desi
前面讨论了很多内容,基本上涉及了有关PCB板的绝大部分相关的知识。第二章探讨了传输线的基本原理,第三章探讨了串扰,在第四章里我们阐述了许多在现代设计中必须关注的非理想互连的问题。对于信号从驱动端引脚到接收端引脚的电气路径的相关问题,我们已经做了一些探究,然而对于硅芯片,即处于封装内部的IC来说,其信号传输通常要通过过孔和连接器来进行,对这样的情况我们该如何处理?在本章中,我们将通过对封装、过孔和连
相敏检波电路鉴相特性的仿真研究
<P>分析了调幅信号和载波信号之间的相位差与调制信号的极性的对应关系,得出了相敏检波电路输出电压的极性与调制信号的极性有对应关系的结论。为了验证相敏检波电路的这一特性,给出3 个电路方案,分别选用理想元件和实际元件,采用Multisim 对其进行仿真实验,直观形象地演示了相敏检波电路的鉴相特性,是传统的实际操作实验所不可比拟的。<BR>关键词:相敏检波;鉴相特性;Multisim;电路仿真</P>
寄生电容在升压变压器中的设计应用
<p>
One of the most critical components in a step-up design like Figure 1 is the transformer. Transformers have parasitic components that can cause them to deviate from their ideal characteristics, a
宽频带高功率射频脉冲功率放大器
利用MOS场效应管(MOSFET),采取AB类推挽式功率放大方式,采用传输线变压器宽带匹配技术,设计出一种宽频带高功率射频脉冲功率放大器模块,其输出脉冲功率达1200W,工作频段0.6M~10MHz。调试及实用结果表明,该放大器工作稳定,性能可靠
基于新型CCCII电流模式二阶带通滤波器设计
<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">针对传统第二代电流传输器(CCII)电压跟随不理想的问题,提出了新型第二代电流传输器(CCCII)并通过采用新型第二代电流传输器(CCCII)构成二阶电
理想的电压反馈型(VFB)运算放大器
<p>
</p>
<div>
运算放大器是线性设计的基本构建模块之一。在经典模式下,运算放大器由两个输入引脚和一个输出引脚构成,其中一个输入引脚使信号反相,另一个输入引脚则保持信号的相位。运算放大器的标准符号如图1所示。其中略去了电源引脚,该引脚显然是器件工作的必需引脚。
高等模拟集成电路
近年来,随着集成电路工艺技术的进步,电子系统的构成发生了两个重要的变化: 一个是数字信号处理和数字电路成为系统的核心,一个是整个电子系统可以集成在一个芯片上(称为片上系统)。这些变化改变了模拟电路在电子系统中的作用,并且影响着模拟集成电路的发展。 数字电路不仅具有远远超过模拟电路的集成规模,而且具有可编程、灵活、易于附加功能、设计周期短、对噪声和制造工艺误差的抗扰性强等优点,因而大多数复杂系统以数
电路分析基础pdf
<P>电路分析基础电路分析基础Fundamentals of Electric CircuitsFundamentals of Electric Circuits多媒体教学课件多媒体教学课件北京理工大学北京理工大学Beijing Institute of TechnologyBeijing Institute of Technology</P>
<P>目录<BR>•第一章集总电路中电压
非理想运放构建的低通滤波电路优化设计
<span id="LbZY">分析了基于理想运算放大器构建的滤波器性能以及参数选原则。针对理想运算放大器所构建的滤波器模型当运算放大器为非理想器件时所制造出的滤波器响应性能并不理想这一问题。研究了非理想运算放大器构建的滤波器器件参数对响应时间的影响,提出了一种选取其最优参数值以构建所需滤波器的方法,实验结果表明了该方法的有效性。<br />
<img alt="" src="http://dl.
BP8Y系列频敏变阻器资料
BP8Y系列频敏变阻器(以下简称变阻器)专用于电机功率1.5~200kW,频率为50Hz的YZR系列起重及冶金用三相异步电动机频繁操作条件下的起动及反接设备。该变阻器直接连接于异步电动机的转子回路中,<br />
不需另装接触器等短接设备;能使电动机获得接近恒转矩的机械特性,是极为理想的起动元件。<br />
<img alt="" src="http://dl.eeworm.com/ele/im
E54显示器整机线路分析
经整流桥整流出的直流电压 110V,由D906 整流,经R911,R912 后,再由C911 滤波,到UC3842 的⑦脚,当⑦脚,当⑦脚电压在16V-34V 之间时,UC3842 开始工作,此时⑧脚有了5V 的基准电压,⑥脚输出脉冲,使开关管Q901 导通,此时,变压器初级线圈(4-6)有电流产生,产生感应电动势,根据互感原理,初级线圈(1-2)也产生感应电压,经R913,D910 整流C911
运算放大器中的虚断虚短应用
<P> 虚短和虚断的概念</P>
<P> 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于 “短路”。开环电压放大倍数越大,两输入端的电位越接近相等。</P>
<P> “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一
数字隔离器为工业电机驱动应用带来性能优势
<div>
工业电机驱动中使用的电子控制必须能在恶劣的电气环境中提供较高的系统性能。电源电路会在电机绕组上导致电压沿激增现象,而这些电压沿则可以电容耦合进低电压电路之中。电源电路中,电源开关和寄生元件的非理想行为也会产生感性耦合噪声。控制电路与电机和传感器之间的长电缆形成多种路径,可将噪声耦合到控制反馈信号中。高性能驱动器需要必须与高噪声电源电路隔离开的高保真反馈控制和信号。在典型的驱动系统中,
CoolMOS导通电阻分析及与VDMOS的比较
<div>
为了克服传统功率MOS 导通电阻与击穿电压之间的矛盾,提出了一种新的理想器件结构,称为超级结器件或Cool2MOS ,CoolMOS 由一系列的P 型和N 型半导体薄层交替排列组成。在截止态时,由于p 型和n 型层中的耗尽区电场产生相互补偿效应,使p 型和n 型层的掺杂浓度可以做的很高而不会引起器件击穿电压的下降。导通时,这种高浓度的掺杂使器件的导通电阻明显降低。由于CoolMOS
微波滤波器设计的新观点
<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px;">根据三角级数展开理论,将理想滤波器特性曲线做级数展开,然后用单节微带线逼近展开式中的一项或多项,级联后逼近理想的滤波器特性曲线。该方法避免了传统滤波器设计