虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

数字调相信号

  • 低频数字式相位测试仪

    低频数字式相位测试仪,本设计给出了以凌阳16位单片机Spce061A为核心的数字式相位测量的基本原理与实现方案。该系统由相位测量仪、数字式移相信号发生器和移相网络三个模块构成,分别由两块单片机独立地实现控制与显示功能。采用DDS技术生成两路正弦波信号,并通过改变存储器中数据读取的起始地址来实现数字移相的功能,用Ф-T变换技术来实现相位差的测量,使得测量分辨率精确到0.1º ,测得的频率与相位差值送入LCD进行显示,加入红外键盘以及语音播报的功能,使得系统具有智能化、人性化的特色。

    标签: 低频 数字式 相位 测试仪

    上传时间: 2017-02-27

    上传用户:chens000

  • 智能空调节能控制器

    智能空调节能控制器智能空调节能控制器 安科瑞 王长幸 ADDC 是一个面向楼宇和大型中央空调系统集中监控的直接数字控制器。可以对楼宇中 的冷冻站、热交换设备、空调系统、通风系统、给排水系统、等等设备进行监测和控制。可 以十分方便的组网,实现分散控制,集中管理。ADDC 有 6DI、8AI、8DO、4AO 共 26 个物理 点,带扩展功能,支持标准 Modbus 协议,带联网功能。与同类产品相比具有以下特点:  既可以通过外部编程来开发应用,也可以依靠本机按键设置组态。  支持在线调试和编程,极大的方便了自动工程师二次开发。  利用 ADDC 的按键组态功能,就可以实现顺序控制,空调设备的恒温恒湿控制,连 锁控制及报警等常规楼宇应用。极大了方便用户,缩短工厂周期,降低了成本。 15.1 型号说明 ADDC M : 主控制器 E : 扩展模块 安科瑞智能空调节能控制器 15.2 技术参数 主要技术参数 主控制器模块(ADDC-M) 扩展模块(ADDC-E) 工作电压 AC/DC24V±10% 频率 50/60Hz 功耗 5VA 通用输入温度 传感器 PT1000/NTC 通道数:4 Pt1000 输入范围:0..150℃,精度:5‰ NTC(标称值可为 1kΩ、10kΩ)输入范围:0-100℃,精度±3℃,采用三线制接法,最大连线 距离(¢≥0.6mm)300m 模拟量输入 通道数:4 测量范围:DC 0-10V,0-20mA 精度 5‰,电压输入时内阻 R:≥100K,最大连线距离(¢≥ 0.6mm)300m 开关量输入 通道数:6 信号类型:无源触点,最大连线距离(¢≥0.6

    标签: 智能空调 节能 控制器

    上传时间: 2022-03-06

    上传用户:

  • VIP专区-嵌入式/单片机编程源码精选合集系列(83)

    VIP专区-嵌入式/单片机编程源码精选合集系列(83)资源包含以下内容:1. TI MSP430 I2C模块实现 日历时钟系统设计方案的源码 全部代码.2. 基于TI MSP430 的SmartMedia卡的本地存储系统源码.3. Altera CycloneIII_Starter_Kit 开发板原理图.4. 嵌入式程序.5. 飞利普ARM2132电路原理图及PCB图,protel99格式。.6. 在Quartus下使用D触发器来加入延迟.7. USB转并口 含有PCB和原理图 速度已经有所改善.8. Jennic ZigBee中文开发指南.9. cs8900网卡在嵌入式系统中的驱动,网上很少有此网卡驱动的源代码,并且cs8900的datasheet写的非常乱,这个网卡驱动是我用了快2个星期弄出来的,分享给大家,希望大家少走弯路..10. 本人购买的嵌入式系统开发板里面带的光盘资料,非常有用的实时操作系统,源代码开发..11. 嵌入式系统开发.在S3C44B0X处理器下的一个相当于pc电脑的BIOS,主要实现系统启动以及初始化功能.非常底层的代码..12. 杭州立宇泰的s3c2410开发板的USB启动代码,里有usb驱动.可降低usb开发的难度..13. 串口阿啊啊 啊啊几个拉开觉得福阿德司法阿斯顿金卡速度fiao].14. TI公司的AD8361的VHDL控制程序.15. ST71x以太网测试程序.开发环境:ads. 连好网线,在windows下.16. 液晶FM12864-1驱动程序.17. Maxim实时时钟芯片DS1302驱动程序.18. ADI芯片AD7705驱动程序.19. GM8125芯片的驱动程序.20. 新型网络芯片enc28j60驱动程序.21. 北京合众达电子技术有限责任公司用于DSP图像处理程序设计文献.22. 基于fpga和sopc的用VHDL语言编写的EDA含异步清0和同步时钟使能的加法计数器.23. 基于fpga和sopc的用VHDL语言编写的EDA7段数码显示译码器.24. 基于fpga和sopc的用VHDL语言编写的EDA8段数码显示译码器.25. 基于fpga和sopc的用VHDL语言编写的EDA数控分频器.26. 基于fpga和sopc的用VHDL语言编写的EDA正弦信号发生器.27. 基于fpga和sopc的用VHDL语言编写的EDA8位16进制频率计.28. 基于fpga和sopc的用VHDL语言编写的EDA序列检测器.29. 基于fpga和sopc的用VHDL语言编写的EDA的ADC0809采样控制电路.30. 基于fpga和sopc的用VHDL语言编写的EDA数据采集电路和简易存储示波器.31. 基于fpga和sopc的用VHDL语言编写的EDA比较器和D/A器件实现.32. 基于fpga和sopc的用VHDL语言编写的EDA移位相加硬件乘法器.33. 基于fpga和sopc的用VHDL语言编写的EDA乐曲硬件演奏电路.34. 基于fpga和sopc的用VHDL语言编写的EDA乒乓球游戏电路.35. 基于fpga和sopc的用VHDL语言编写的EDA等精度频率设计.36. 基于fpga和sopc的用VHDL语言编写的EDA采样高速A/D的存储示波器.37. 基于fpga和sopc的用VHDL语言编写的EDA信号采集与频谱分析电路.38. 基于fpga和sopc的用VHDL语言编写的EDA的DDS信号发生器.39. 基于fpga和sopc的用VHDL语言编写的EDA数字移相信号发生器.40. 基于fpga和sopc的用VHDL语言编写的EDA的PS/2鼠标键盘控制模块.

    标签:

    上传时间: 2013-04-15

    上传用户:eeworm

  • 介绍单相全桥逆变器的工作原理, 阐述产生SPWM波和实现PI 控制的算法, 给出以DSP( 数 字信号处理器) 实现控制的软件流程。实验表明利用软件完成逆变器控制是可行的。 关键词: 正弦逆变器

    介绍单相全桥逆变器的工作原理, 阐述产生SPWM波和实现PI 控制的算法, 给出以DSP( 数 字信号处理器) 实现控制的软件流程。实验表明利用软件完成逆变器控制是可行的。 关键词: 正弦逆变器

    标签: SPWM DSP 逆变器 控制

    上传时间: 2014-11-22

    上传用户:天涯

  • 为了测量 DVD的Jitter ,需要知道刻录时钟。针对 DVD 特殊的数据格式 NRZI,提出一个专用的时钟恢复系 统 ,用于从读出的 RF信号中恢复写时钟。这个系统采用基于锁相环的双环结构。介绍

    为了测量 DVD的Jitter ,需要知道刻录时钟。针对 DVD 特殊的数据格式 NRZI,提出一个专用的时钟恢复系 统 ,用于从读出的 RF信号中恢复写时钟。这个系统采用基于锁相环的双环结构。介绍系统结构、各个模块的构成原理、数 学模型 ,并结合 Simulink 给出仿真结果。理论和实验证明 ,该系统既可作为测量 DVD Jitter 的硬件电路设计的参考 ,也可作 为软件设计的工具。

    标签: DVD Jitter NRZI 时钟

    上传时间: 2015-10-13

    上传用户:1079836864

  • 信号多相滤波matlab 实现32 信道滤波

    信号多相滤波matlab 实现32 信道滤波,滤波阶数为512

    标签: matlab 信号 多相滤波 信道

    上传时间: 2017-09-07

    上传用户:上善若水

  • 基于锁相放大器的微弱信号检测研究

    摘要:微弱信号检测是随着工程应用而不断发展的一门学科。近年来,微弱信号检测相关研究已经成为一个热点研究领域,具体表现在对微弱信号检测方法的探寻、对微弱信号检测系统的设计、对微弱信号检测仪器的研发。本文中主要研究了利用锁相放大器进行有用信号提取的微弱信号检测原理与实现方法。首先介绍了微弱信号检测的基本理论与常见的几种检测方法,重点介绍了利用数字锁相放大器进行信号检测的原理。在此基础上,结合数字锁相放大器的相关检测原理,给出了数字锁相放大器的整体设计方案,着重从相关检测原理算法和移相算法方面对数字锁相放大器的设计作了深入探讨。重点研究了采样频率与相关运算结果的关系,在设计的过程中先使用MATLAB进行算法上的模拟,从模拟结果发现参考信号为方波而采样频率与信号频率成一定关系时,系统相关运算存在固有误差。为减少该误差,提出了将动态采样率的方法引入数字锁相放大器设计中,运算发现动态采样的采样频率数越多,奇点产生的误差越少,有效地解决奇点问题。最后,使用LabVIEW对设计的系统进行仿真测试。测试结果表明该数字锁相放大器在信号幅度为5V、噪声标准差小于等于50时(SWR=.34.04dB),能有效地检测出频率为500kHz以下的信号,系统检测结果与理论计算值的相对误差基本不超过2%。

    标签: 锁相放大器 微弱信号检测

    上传时间: 2022-06-18

    上传用户:

  • Verilog实现的DDS正弦信号发生器和测频测相模块

    Verilog实现的DDS正弦信号发生器和测频测相模块,DDS模块可产生两路频率和相位差均可预置调整的值正弦波,频率范围为20Hz-5MHz,相位范围为0°-359°,测量的数据通过引脚传输给单片机,单片机进行计算和显示。

    标签: Verilog DDS 正弦信号发生器 模块

    上传时间: 2013-08-28

    上传用户:asdfasdfd

  • 基于锁相放大原理的微弱信号检测电路

    针对目前成品锁相放大器价格昂贵且体积大,传统窄带滤波法性能和灵活性差的特点,设计了基于锁相放大器原理的微弱信号检测电路。本电路采用单片机作为激励信号和参考信号的发生器,利用带关断引脚的运放实现相敏检波器,整个电路仅使用了5个运算放大器和一些阻容元件。实验表明,本电路能实现了从信噪比为0.1的被测信号中提取有用信号幅值的功能,测量误差控制在5%以内。由于本电路有实现简单和成本低的特点,稍加修改后可作为模块电路用到其他测量系统当中。

    标签: 锁相放大 微弱信号 检测电路

    上传时间: 2014-12-23

    上传用户:开怀常笑

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122