浮点除法运算及其在单片机上的实现
上传时间: 2013-11-01
上传用户:ssj927211
数码管显示红外线遥控器发送的数值
上传时间: 2013-10-13
上传用户:ecooo
c语言既具有一般高级语言的特点,又能直接对计算机的硬件进行操作.Keil C51是德国Keil Software公司出品的51系列兼容单片机c语言软件开发系统.与汇编相比,c语言在功能、结构性、可读性、可维护性上有明显的优势,因而易学易用.Keil C51继承了c语言对数据有很强的表达能力的优点,具有丰富的运算符,在算术运算和逻辑运算上更体现了汇编不可比拟的优点.由于C51语言具有强大的数据处理能力和数学运算库函数,当涉及到复杂的数学运算,使用C51语言往往会比较方便.在一般情况下,由C51编译生成的代码不论长度还是程序运行速度均能适应程序要求.利用C51开发单片机系统,不但可以使编程工作量大为减少,而且使软件维护、修改亦变得非常方便.
上传时间: 2014-01-25
上传用户:yyxy
提出了采用两段式同轴波纹慢波结构实现双频高功率微波输出的相对论返波振荡器, 推导了该结构的TM0n模式色散方程,数值求解了两段式同轴波纹慢波结构TM0n模色散曲线,分析了该器件X波段双频高功率微波输出的产生机理, 分析中考虑了电子注在慢波结构第二段工作效率不变和下降时的双频工作点情况,并运用2.5 维全电磁粒子模拟程序验证了双频微波信号的可靠性。关键词高功率微波;双频;X 波段;相对论返波振荡器 当前, 应用于高功率微波效应的微波器件只有一个主频率,已有的实验结果表明,在现有条件下,单频高功率微波用于攻击敌方的电子系统所需的功率远远大于单只高功率微波源所能产生的功率,即破坏阈值很高[1]。但是,如果用两个或多个频率相近的高功率微波波束产生拍频后用于攻击电子系统,那么所需的功率密度将大大减小,即效应阈值大大下降, 采用这种方式将有可能在现有的技术下使高功率微波实用化[2],但是双频及多频高功率微波源器件的研究目前是十分前沿的课题,处于刚起步阶段,在国内外极少有报道[2~4],因而,用单个微波源器件产生稳定输出的双频甚至多频高功率微波具有重要的实际应用价值和学术价值,是高功率微波领域又一个新兴的研究方向, 在高功率微波武器和新体制雷达等方面将有良好的应用前景。
上传时间: 2013-10-31
上传用户:kxyw404582151
MSP430系列单片机C语言程序设计与开发MSP430系列是一个具有明显技术特色的单片机品种。关于它的硬件特性及汇编语言程序设计已在《MSP430系列超低功耗16位单片机的原理与应用》及《MSP430系列 FLASH型超低功耗16位单片机》等书中作了全面介绍。《MSP430系列单片机C语言程序设计与开发》介绍IAR公司为MSP430系列单片机配备的C程序设计语言C430。书中叙述了C语言的基本概念、C430的扩展特性及C库函数;对C430的集成开发环境的使用及出错信息作了详尽的说明;并以MSP430F149为例,对各种应用问题及外围模块操作提供了典型的C程序例程,供读者在今后的C430程序设计中参考。 《MSP430系列单片机C语言程序设计与开发》可以作为高等院校计算机、自动化及电子技术类专业的教学参考书,也可作为工程技术人员设计开发时的技术资料。MSP430系列超低功耗16位单片机的原理与应用目录MSP430系列单片机C语言程序设计与开发 目录 第1章 C语言基本知识1.1 标识符与关键字11.1.1 标识符11.1.2 关键字11.2 数据基本类型21.2.1 整型数据21.2.2 实型数据31.2.3 字符型数据41.2.4 各种数据转换关系61.3 C语言的运算符71.3.1 算术运算符71.3.2 关系运算符和逻辑运算符71.3.3 赋值运算符81.3.4 逗号运算符81.3.5 ? 与 :运算符81.3.6 强制转换运算符91.3.7 各种运算符优先级列表91.4 程序设计的三种基本结构101.4.1 语句的概念101.4.2 顺序结构111.4.3 选择结构121.4.4 循环结构141.5 函数181.5.1 函数定义181.5.2 局部变量与全局变量191.5.3 形式参数与实际参数201.5.4 函数调用方式201.5.5 函数嵌套调用211.5.6 变量的存储类别221.5.7 内部函数和外部函数231.6 数组231.6.1 一维数组241.6.2 多维数组241.6.3 字符数组261.7 指针271.7.1 指针与地址的概念271.7.2 指针变量的定义281.7.3 指针变量的引用281.7.4 数组的指针281.7.5 函数的指针301.7.6 指针数组311.8 结构和联合321.8.1 结构定义321.8.2 结构类型变量的定义331.8.3 结构类型变量的初始化341.8.4 结构类型变量的引用341.8.5 联合341.9 枚举361.9.1 枚举的定义361.9.2 枚举元素的值371.9. 3 枚举变量的使用371.10 类型定义381.10.1 类型定义的形式381.10.2 类型定义的使用381.11 位运算391.11.1 位运算符391.11.2 位域401.12 预处理功能411.12.1 简单宏定义和带参数宏定义411.12.2 文件包含431.12.3 条件编译命令44第2章 C430--MSP430系列的C语言2.1 MSP430系列的C语言452.1.1 C430概述452.1.2 C430程序设计工作流程462.1.3 开始462.1.4 C430程序生成472.2 C430的数据表达482.2.1 数据类型482.2.2 编码效率502.3 C430的配置512.3.1 引言512.3. 2 存储器分配522.3.3 堆栈体积522.3.4 输入输出522.3.5 寄存器的访问542.3.6 堆体积542.3.7 初始化54第3章 C430的开发调试环境3.1 引言563.1.1 Workbench特性563.1.2 Workbench的内嵌编辑器特性563.1.3 C编译器特性573.1. 4 汇编器特性573.1.5 连接器特性583.1.6 库管理器特性583.1.7 C?SPY调试器特性593.2 Workbench概述593.2.1 项目管理模式593.2.2 选项设置603.2.3 建立项目603.2.4 测试代码613.2.5 样本应用程序613.3 Workbench的操作623.3.1 开始633.3.2 编译项目683.3.3 连接项目693.3.4 调试项目713.3.5 使用Make命令733.4 Workbench的功能汇总753.4.1 Workbench的窗口753.4.2 Workbench的菜单功能813.5 Workbench的内嵌编辑器993.5.1 内嵌编辑器操作993.5.2 编辑键说明993.6 C?SPY概述1013.6.1 C?SPY的C语言级和汇编语言级调试1013.6.2 程序的执行1023.7 C?SPY的操作1033.7.1 程序生成1033.7.2 编译与连接1033.7.3 C?SPY运行1033.7.4 C语言级调试1043.7.5 汇编级调试1113.8 C?SPY的功能汇总1133.8.1 C?SPY的窗口1133.8.2 C?SPY的菜单命令功能1203.9 C?SPY的表达式与宏1323.9.1 汇编语言表达式1323.9.2 C语言表达式1333.9.3 C?SPY宏1353.9.4 C?SPY的设置宏1373.9.5 C?SPY的系统宏137 第4章 C430程序设计实例4.1 程序设计与调试环境1434.1.1 程序设计调试集成环境1434.1.2 设备连接1444.1.3 ProF149实验系统1444.2 数值计算1454.2.1 C语言表达式1454.2.2 利用MPY实现运算1464.3 循环结构1474.4 选择结构1484.5 SFR访问1494.6 RAM访问1504.7 FLASH访问1514.8 WDT操作1534.8. 1 WDT使程序自动复位1534.8.2 程序对WATCHDOG计数溢出的控制1544.8.3 WDT的定时器功能1554.9 Timer操作1554.9.1 用Timer产生时钟信号1554.9.2 用Timer检测脉冲宽度1564.10 UART操作1574.10.1 点对点通信1574.10.2 点对多点通信1604.11 SPI操作1634.12 比较器操作1654.13 ADC12操作1674.13.1 单通道单次转换1674.13.2 序列通道多次转换1684.14 时钟模块操作1704.15 中断服务程序1714.16 省电工作模式1754.17 调用汇编语言子程序1764.17.1 程序举例1764.17.2 生成C程序调用的汇编子程序177第5章 C430的扩展特性5.1 C430的语言扩展概述1785.1.1 扩展关键字1785.1.2 #pragma编译命令1785.1.3 预定义符号1795.1.4 本征函数1795.1.5 其他扩展特性1795.2 C430的关键字扩展1795.2.1 interrupt1805.2.2 monitor1805.2.3 no_init1815.2.4 sfrb1815.2.5 sfrw1825.3 C430的 #pragma编译命令1825.3.1 bitfields=default1825.3.2 bitfields=reversed1825.3.3 codeseg1835.3.4 function=default1835.3.5 function=interrupt1845.3.6 function=monitor1845.3.7 language=default1845.3.8 language=extended1845.3.9 memory=constseg1855.3.10 memory=dataseg1855.3.11 memory=default1855.3.12 memory=no_init1865.3.13 warnings=default1865.3.14 warnings=off1865.3.15 warnings=on1865.4 C430的预定义符号1865.4.1 DATE1875.4.2 FILE1875.4.3 IAR_SYSTEMS_ICC1875.4.4 LINE1875.4.5 STDC1875.4.6 TID1875.4.7 TIME1885.4.8 VER1885.5 C430的本征函数1885.5.1 _args$1885.5.2 _argt$1895.5.3 _BIC_SR1895.5.4 _BIS_SR1905.5.5 _DINT1905.5.6 _EINT1905.5.7 _NOP1905.5.8 _OPC1905.6 C430的汇编语言接口1915.6.1 创建汇编子程序框架1915.6.2 调用规则1915.6.3 C程序调用汇编子程序1935.7 C430的段定义1935.7.1 存储器分布与段定义1945.7.2 CCSTR段1945.7.3 CDATA0段1945.7.4 CODE段1955.7.5 CONST1955.7.6 CSTACK1955.7.7 CSTR1955.7.8 ECSTR1955.7.9 IDATA01965.7.10 INTVEC1965.7.11 NO_INIT1965.7.12 UDATA0196第6章 C430的库函数6.1 引言1976.1.1 库模块文件1976.1.2 头文件1976.1.3 库定义汇总1976.2C 库函数参考2046.2.1 C库函数的说明格式2046.2.2 C库函数说明204第7章 C430编译器的诊断消息7.1 编译诊断消息的类型2307.2 编译出错消息2317.3 编译警告消息243附录 AMSP430系列FLASH型芯片资料248附录 BProF149实验系统251附录 CMSP430x14x.H文件253附录 DIAR MSP430 C语言产品介绍275
上传时间: 2014-05-05
上传用户:253189838
单片机的数学基础:本章基本要求:单片机是现代电子智能仪器仪表及嵌入式系统的主要组成部分,应用非常广泛,是现代工程技术人员必须掌握的知识之一。本章要求掌握数的进制及其相互转换、带符号数的表示方法、溢出的判别方法、ASCII 码和BCD 码等单片机的数学基础知识;掌握单片机的概念、特点、应用范围、发展历程等基础知识;了解常用单片机系列。为后续章节的学习打下基础。1.1 单片机的数学基础1.1.1 数的进位制及其相互转换(1) 数的几种常用进制数制是人们利用符号来计数的方法,数制有很多种,人们熟悉的是十进制。但由于数在机器中是以器件的物理状态来表示的,所以一个具有两种稳定状态且能相互转换的器件,就可以用来表示一位二进制数。二进制数的表示是最简单而且是最可靠的,另外二进制的运算规则也是最简单的。因此,迄今为止,所有计算机都是以二进制进行算术运算和逻辑运算的。但是在使用二进制编写程序时既繁锁又容易出错,所以人们在编写程序时又经常用到十进制、十六进制或八进制。下面分别予以介绍。任何一种数制都有两个要素,即基数和权。基数为数制中所使用的数码的个数。当基数为R 时,该数制可使用的数码为0~(R-1)。例如在二进制中基数为2,可使用0 和1 两个数码。在进行运算时按逢R 进一,借1当R的规则进行。权是数制中某一数位上单位数的大小,它是一个指数,底是基数R,幂是数码的位置号,数码的位置号从0 开始。将一个数中某一位的数码与该位的权相乘,即为该位数码的数值。
标签: 单片机
上传时间: 2013-11-16
上传用户:mahone
微型机算计发展概述人类从原始社会学会使用工具以来到现代社会经历了三次大的产业革命:农业革命、工业革命、信息革命。而信息革命是以计算机技术和通信技术的发展和普及为代表的。人类已进入了高速发展的现代时期。其中计算机科学和技术发展之快,是任何其他技术都无法相提并论的自从1946年美国宾夕法尼亚大学研制成功的世界上第一台电子计算机到现在已50多年的历史。计算机的发展经历了四代:第一代:电子管电路计算机,电子管数:18800个;继电器数量:5000个;耗电量:150KW;重量:30t;占地面积:150平方米;运算速度:5000次加法运算/s。第二代:晶体管电路计算机(60年代初)第三代:小规模集成电路计算机。第四代:大规模(LSI)和超大规模(VSLI)集成电路计算机。第四代计算机基本情况:运算速度为每秒几千亿次到几万亿次;从数值计算和数据处理到目前进行知识处理的人工智能阶段;计算机不仅可以处理文字、字符、图形图象信息,而且可以处理音频、视频等多媒体信息;计算机正朝着智能化和多媒体化方向发展。微型计算机的定义:以微处理器为核心,再配上半导体存储器、输入/输出接口电路、系统总线及其它支持逻辑电路组成的计算机称微型计算机。在1971年美国Intel公司首先研制成功世界上第一块微处理器芯片4004以来,差不多每隔2~3年就推出一代新的微处理器产品;如今已推出了第五代微处理器。因为微处理器是微型计算机的核心部件,它的性能在很大程度上决定了微型计算机的性能,所以微型计算机的发展是以微处理器的发展而更新换代的。微处理器和微型计算机的发展:1.第一代微处理器和微型计算机:(1971~1973年)——4位CPU和低档8位处理器,典型的产品有:Intel 4004、改进型的4040,是4位处理器,以它为核心构成的微机是MCS-4。Intel 8008是8位通用微处理器,以它为核心所构的微机是MCS-8。参数:芯片采用PMOS工艺;集成度为2000管/片;时钟频率1MHz;平均指令执行时间为20μs。2.第二代微处理器和微型计算机(1973~1978年)——成熟的8位CPU,典型的产品有:Intel 8080(1973年由Intel公司推出)MC6800 (1974年由美国Motorola推出。Z-80 (1975年由Zilog公司推出。Intel 8085 (1976年由Intel公司推出,是Intel 8080的改进型。MOS 6502,由MOS公司推出,它是IBM PC机问世之前世界上最流行的微型计算机Apple2(苹果机)的CPU。第二代微处理器的参数:芯片工艺采用NMOS工艺,集成度达到5000~9000管/片;时钟频率2~4MHz;平均指令执行时间为1~2μs;具有多种寻址方式,指令系统完善,基本指令100多条。特点:具有中断、DMA等控制功能;也考虑了兼容性、接口标准化和通用性、配套的外围电路功能和种类齐全。在软件方面:主要是汇编,还有一些简单的高级语言和操作系统。
上传时间: 2013-11-24
上传用户:蒋清华嗯
本章将介绍μ’nSP™系列单片机的应用领域,具体讲述SPCE061A单片机在通讯、语音领域里的应用,并详细给出了有关系统的电路原理图、程序流程图以及程序代码,供读者参考。 μ’nSP™家族产品具有电源电压范围和工作速率范围较宽、集成度高、性能价格比高以及功耗低等特点,故其有非常广泛的应用领域。μ’nSP™家族系列产品,涵盖了非常广泛的应用。包括:发音与语音识别的微控制器(SPCE系列)、通信来电辩识应用的微控制器(SPT660x系列)、以及通用型微控制器等等,主要体现在以下几个方面: 用于数字信号处理 用于开发研制便携式移动终端 用于开发嵌入式计算机应用系统 用于数字信号处理1. 数字滤波器 (Digital Filter)数字滤波器是一种计算处理或算法。借助于此,可以将输入的一种数字信号或序列变换为另一种序列输出。数字滤波器已被广泛地应用于数字语音、数字图像处理以及模式识别和频谱分析。数字信号处理器(DSP,Digital Signal Processor)的作用是通过一系列数字来表示信号及其信息,并借助数字计算方法变换和处理这些信号。为了构成DSP,必须有一种部件能够快速地完成两个数值的乘法运算并将乘积累加于寄存器。“快速”意味着乘和累加(MAC,Multiply & ACcumulate)较高的运算速度。若以16位数值进行乘和累加,其结果应为32位。显然,μ’nSP™的硬件结构与其指令系统的结合足以构成DSP应用的硬件MAC单元,因而很适用于一些DSP方面的应用。
上传时间: 2014-01-26
上传用户:qb1993225
汇编语言在数据处理中应用(自学)1、数值转换中应用 数据输入/输出时的转换2、串操作中应用 串移动、串搜索、串比较、 串插入、串删除3、代码转换中应用 ASCII码 BCD码 二进数 BCD码 4、算术运算 在这一部分,我们将汇编语言在数据处理中的应用集中起来给大家,其中有些程序在11章中已经介绍过。
上传时间: 2013-10-23
上传用户:qwer0574
微处理器及微型计算机的发展概况 第一代微处理器是以Intel公司1971年推出的4004,4040为代表的四位微处理机。 第二代微处理机(1973年~1977年),典型代表有:Intel 公司的8080、8085;Motorola公司的M6800以及Zlog公司的Z80。 第三代微处理机 第三代微机是以16位机为代表,基本上是在第二代微机的基础上发展起来的。其中Intel公司的8088。8086是在8085的基础发展起来的;M68000是Motorola公司在M6800 的基础发展起来的; 第四代微处理机 以Intel公司1984年10月推出的80386CPU和1989年4月推出的80486CPU为代表, 第五代微处理机的发展更加迅猛,1993年3月被命名为PENTIUM的微处理机面世,98年PENTIUM 2又被推向市场。 INTEL CPU 发展历史Intel第一块CPU 4004,4位主理器,主频108kHz,运算速度0.06MIPs(Million Instructions Per Second, 每秒百万条指令),集成晶体管2,300个,10微米制造工艺,最大寻址内存640 bytes,生产曰期1971年11月. 8085,8位主理器,主频5M,运算速度0.37MIPs,集成晶体管6,500个,3微米制造工艺,最大寻址内存64KB,生产曰期1976年 8086,16位主理器,主频4.77/8/10MHZ,运算速度0.75MIPs,集成晶体管29,000个,3微米制造工艺,最大寻址内存1MB,生产曰期1978年6月. 80486DX,DX2,DX4,32位主理器,主频25/33/50/66/75/100MHZ,总线频率33/50/66MHZ,运算速度20~60MIPs,集成晶体管1.2M个,1微米制造工艺,168针PGA,最大寻址内存4GB,缓存8/16/32/64KB,生产曰期1989年4月 Celeron一代, 主频266/300MHZ(266/300MHz w/o L2 cache, Covington芯心 (Klamath based),300A/333/366/400/433/466/500/533MHz w/128kB L2 cache, Mendocino核心 (Deschutes-based), 总线频率66MHz,0.25微米制造工艺,生产曰期1998年4月) Pentium 4 (478针),至今分为三种核心:Willamette核心(主频1.5G起,FSB400MHZ,0.18微米制造工艺),Northwood核心(主频1.6G~3.0G,FSB533MHZ,0.13微米制造工艺, 二级缓存512K),Prescott核心(主频2.8G起,FSB800MHZ,0.09微米制造工艺,1M二级缓存,13条全新指令集SSE3),生产曰期2001年7月. 更大的缓存、更高的频率、 超级流水线、分支预测、乱序执行超线程技术 微型计算机组成结构单片机简介单片机即单片机微型计算机,是将计算机主机(CPU、 内存和I/O接口)集成在一小块硅片上的微型机。 三、计算机编程语言的发展概况 机器语言 机器语言就是0,1码语言,是计算机唯一能理解并直接执行的语言。汇编语言 用一些助记符号代替用0,1码描述的某种机器的指令系统,汇编语言就是在此基础上完善起来的。高级语言 BASIC,PASCAL,C语言等等。用高级语言编写的程序称源程序,它们必须通过编译或解释,连接等步骤才能被计算机处理。 面向对象语言 C++,Java等编程语言是面向对象的语言。 1.3 微型计算机中信息的表示及运算基础(一) 十进制ND有十个数码:0~9,逢十进一。 例 1234.5=1×103 +2×102 +3×101 +4×100 +5×10-1加权展开式以10称为基数,各位系数为0~9,10i为权。 一般表达式:ND= dn-1×10n-1+dn-2×10n-2 +…+d0×100 +d-1×10-1+… (二) 二进制NB两个数码:0、1, 逢二进一。 例 1101.101=1×23+1×22+0×21+1×20+1×2-1+1×2-3 加权展开式以2为基数,各位系数为0、1, 2i为权。 一般表达式: NB = bn-1×2n-1 + bn-2×2n-2 +…+b0×20 +b-1×2-1+… (三)十六进制NH十六个数码0~9、A~F,逢十六进一。 例:DFC.8=13×162 +15×161 +12×160 +8×16-1 展开式以十六为基数,各位系数为0~9,A~F,16i为权。 一般表达式: NH= hn-1×16n-1+ hn-2×16n-2+…+ h0×160+ h-1×16-1+… 二、不同进位计数制之间的转换 (二)二进制与十六进制数之间的转换 24=16 ,四位二进制数对应一位十六进制数。举例:(三)十进制数转换成二、十六进制数整数、小数分别转换 1.整数转换法“除基取余”:十进制整数不断除以转换进制基数,直至商为0。每除一次取一个余数,从低位排向高位。举例: 2. 小数转换法“乘基取整”:用转换进制的基数乘以小数部分,直至小数为0或达到转换精度要求的位数。每乘一次取一次整数,从最高位排到最低位。举例: 三、带符号数的表示方法 机器数:机器中数的表示形式。真值: 机器数所代表的实际数值。举例:一个8位机器数与它的真值对应关系如下: 真值: X1=+84=+1010100B X2=-84= -1010100B 机器数:[X1]机= 01010100 [X2]机= 11010100(二)原码、反码、补码最高位为符号位,0表示 “+”,1表示“-”。 数值位与真值数值位相同。 例 8位原码机器数: 真值: x1 = +1010100B x2 =- 1010100B 机器数: [x1]原 = 01010100 [x2]原 = 11010100原码表示简单直观,但0的表示不唯一,加减运算复杂。 正数的反码与原码表示相同。 负数反码符号位为 1,数值位为原码数值各位取反。 例 8位反码机器数: x= +4: [x]原= 00000100 [x]反= 00000100 x= -4: [x]原= 10000100 [x]反= 111110113、补码(Two’s Complement)正数的补码表示与原码相同。 负数补码等于2n-abs(x)8位机器数表示的真值四、 二进制编码例:求十进制数876的BCD码 876= 1000 0111 0110 BCD 876= 36CH = 1101101100B 2、字符编码 美国标准信息交换码ASCII码,用于计算 机与计算机、计算机与外设之间传递信息。 3、汉字编码 “国家标准信息交换用汉字编码”(GB2312-80标准),简称国标码。 用两个七位二进制数编码表示一个汉字 例如“巧”字的代码是39H、41H汉字内码例如“巧”字的代码是0B9H、0C1H1·4 运算基础 一、二进制数的运算加法规则:“逢2进1” 减法规则:“借1当2” 乘法规则:“逢0出0,全1出1”二、二—十进制数的加、减运算 BCD数的运算规则 循十进制数的运算规则“逢10进1”。但计算机在进行这种运算时会出现潜在的错误。为了解决BCD数的运算问题,采取调整运算结果的措施:即“加六修正”和“减六修正”例:10001000(BCD)+01101001(BCD) =000101010111(BCD) 1 0 0 0 1 0 0 0 + 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 + 0 1 1 0 0 1 1 0 ……调整 1 0 1 0 1 0 1 1 1 进位 例: 10001000(BCD)- 01101001(BCD)= 00011001(BCD) 1 0 0 0 1 0 0 0 - 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 1 - 0 1 1 0 ……调整 0 0 0 1 1 0 0 1 三、 带符号二进制数的运算 1.5 几个重要的数字逻辑电路编码器译码器计数器微机自动工作的条件程序指令顺序存放自动跟踪指令执行1.6 微机基本结构微机结构各部分组成连接方式1、以CPU为中心的双总线结构;2、以内存为中心的双总线结构;3、单总线结构CPU结构管脚特点 1、多功能;2、分时复用内部结构 1、控制; 2、运算; 3、寄存器; 4、地址程序计数器堆栈定义 1、定义;2、管理;3、堆栈形式
上传时间: 2013-10-17
上传用户:erkuizhang