虫虫首页|资源下载|资源专辑|精品软件
登录|注册

敏感

  • 麦克风阵列波束成形

    所有MEMS麦克风都具有全向拾音响应,也就是能够均等地响应来自四面八方的声音。多个麦克风可以配置成阵列,形成定向响应或波束场型。经过设计,波束成形麦克风阵列可以对来自一个或多个特定方向的声音更敏感。麦克风波束成形是一个丰富而复杂的课题。本应用笔记仅讨论基本概念和阵列配置,包括宽边求和阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。

    标签: 麦克风阵列 波束成形

    上传时间: 2013-10-16

    上传用户:chenlong

  • 2.5Gbs限幅放大器设计

    限幅放大器信号通道利用多级放大方式"降低了输出信号上升:下降时间"减小了级间驱动能力不匹配对信号完整性的影响#通过负反馈环路消除了信号通道上的偏移电压"采用独特的迟滞技术"使检测电路的迟滞对外接电阻变化不敏感!

    标签: 2.5 Gbs 限幅 放大器设计

    上传时间: 2013-11-05

    上传用户:s蓝莓汁

  • 差分信号PCB布局布线误区

     误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。虽然差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路。

    标签: PCB 差分信号 布局布线

    上传时间: 2014-12-22

    上传用户:tiantian

  • PCB布线设计-模拟和数字布线的异同

    PCB布线设计-模拟和数字布线的异同工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与 模拟 或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设计就不再是最优方案了。本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线的基本相似之处及差别。模拟和数字布线策略的相似之处旁路或去耦电容在布线时,模拟器件和数字器件都需要这些类型的电容,都需要靠近其电源引脚连接一个电容,此电容值通常为0.1mF。系统供电电源侧需要另一类电容,通常此电容值大约为10mF。这些电容的位置如图1所示。电容取值范围为推荐值的1/10至10倍之间。但引脚须较短,且要尽量靠近器件(对于0.1mF电容)或供电电源(对于10mF电容)。在电路板上加旁路或去耦电容,以及这些电容在板上的位置,对于数字和模拟设计来说都属于常识。但有趣的是,其原因却有所不同。在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动。

    标签: PCB 布线设计 模拟 数字布线

    上传时间: 2013-11-02

    上传用户:shaojie2080

  • PCB被动组件的隐藏特性解析

    PCB 被动组件的隐藏特性解析 传统上,EMC一直被视为「黑色魔术(black magic)」。其实,EMC是可以藉由数学公式来理解的。不过,纵使有数学分析方法可以利用,但那些数学方程式对实际的EMC电路设计而言,仍然太过复杂了。幸运的是,在大多数的实务工作中,工程师并不需要完全理解那些复杂的数学公式和存在于EMC规范中的学理依据,只要藉由简单的数学模型,就能够明白要如何达到EMC的要求。本文藉由简单的数学公式和电磁理论,来说明在印刷电路板(PCB)上被动组件(passivecomponent)的隐藏行为和特性,这些都是工程师想让所设计的电子产品通过EMC标准时,事先所必须具备的基本知识。导线和PCB走线导线(wire)、走线(trace)、固定架……等看似不起眼的组件,却经常成为射频能量的最佳发射器(亦即,EMI的来源)。每一种组件都具有电感,这包含硅芯片的焊线(bond wire)、以及电阻、电容、电感的接脚。每根导线或走线都包含有隐藏的寄生电容和电感。这些寄生性组件会影响导线的阻抗大小,而且对频率很敏感。依据LC 的值(决定自共振频率)和PCB走线的长度,在某组件和PCB走线之间,可以产生自共振(self-resonance),因此,形成一根有效率的辐射天线。在低频时,导线大致上只具有电阻的特性。但在高频时,导线就具有电感的特性。因为变成高频后,会造成阻抗大小的变化,进而改变导线或PCB 走线与接地之间的EMC 设计,这时必需使用接地面(ground plane)和接地网格(ground grid)。导线和PCB 走线的最主要差别只在于,导线是圆形的,走线是长方形的。导线或走线的阻抗包含电阻R和感抗XL = 2πfL,在高频时,此阻抗定义为Z = R + j XL j2πfL,没有容抗Xc = 1/2πfC存在。频率高于100 kHz以上时,感抗大于电阻,此时导线或走线不再是低电阻的连接线,而是电感。一般而言,在音频以上工作的导线或走线应该视为电感,不能再看成电阻,而且可以是射频天线。

    标签: PCB 被动组件

    上传时间: 2013-10-08

    上传用户:时代将军

  • PCB布线原则

    PCB 布线原则连线精简原则连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。安全载流原则铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。印制导线最大允许工作电流(导线厚50um,允许温升10℃)导线宽度(Mil) 导线电流(A) 其中:K 为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048;T 为最大温升,单位为℃;A 为覆铜线的截面积,单位为mil(不是mm,注意);I 为允许的最大电流,单位是A。电磁抗干扰原则电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。一、 通常一个电子系统中有各种不同的地线,如数字地、逻辑地、系统地、机壳地等,地线的设计原则如下:1、 正确的单点和多点接地在低频电路中,信号的工作频率小于1MHZ,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHZ 时,如果采用一点接地,其地线的长度不应超过波长的1/20,否则应采用多点接地法。2、 数字地与模拟地分开若线路板上既有逻辑电路又有线性电路,应尽量使它们分开。一般数字电路的抗干扰能力比较强,例如TTL 电路的噪声容限为0.4~0.6V,CMOS 电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路只要有很小的噪声就足以使其工作不正常,所以这两类电路应该分开布局布线。3、 接地线应尽量加粗若接地线用很细的线条,则接地电位会随电流的变化而变化,使抗噪性能降低。因此应将地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2~3mm 以上。4、 接地线构成闭环路只由数字电路组成的印制板,其接地电路布成环路大多能提高抗噪声能力。因为环形地线可以减小接地电阻,从而减小接地电位差。二、 配置退藕电容PCB 设计的常规做法之一是在印刷板的各个关键部位配置适当的退藕电容,退藕电容的一般配置原则是:􀁺?电电源的输入端跨½10~100uf的的电解电容器,如果印制电路板的位置允许,采Ó100uf以以上的电解电容器抗干扰效果会更好¡���?原原则上每个集成电路芯片都应布置一¸0.01uf~`0.1uf的的瓷片电容,如遇印制板空隙不够,可Ã4~8个个芯片布置一¸1~10uf的的钽电容(最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酝电容)。���?对对于抗噪能力弱、关断时电源变化大的器件,ÈRA、¡ROM存存储器件,应在芯片的电源线和地线之间直接接入退藕电容¡���?电电容引线不能太长,尤其是高频旁路电容不能有引线¡三¡过过孔设¼在高ËPCB设设计中,看似简单的过孔也往往会给电路的设计带来很大的负面效应,为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到£���?从从成本和信号质量两方面来考虑,选择合理尺寸的过孔大小。例如¶6- 10层层的内存模¿PCB设设计来说,选Ó10/20mi((钻¿焊焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使Ó8/18Mil的的过孔。在目前技术条件下,很难使用更小尺寸的过孔了(当孔的深度超过钻孔直径µ6倍倍时,就无法保证孔壁能均匀镀铜);对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗¡���?使使用较薄µPCB板板有利于减小过孔的两种寄生参数¡���? PCB板板上的信号走线尽量不换层,即尽量不要使用不必要的过孔¡���?电电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好¡���?在在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以ÔPCB板板上大量放置一些多余的接地过孔¡四¡降降低噪声与电磁干扰的一些经Ñ?能能用低速芯片就不用高速的,高速芯片用在关键地方¡?可可用串一个电阻的方法,降低控制电路上下沿跳变速率¡?尽尽量为继电器等提供某种形式的阻尼,ÈRC设设置电流阻尼¡?使使用满足系统要求的最低频率时钟¡?时时钟应尽量靠近到用该时钟的器件,石英晶体振荡器的外壳要接地¡?用用地线将时钟区圈起来,时钟线尽量短¡?石石英晶体下面以及对噪声敏感的器件下面不要走线¡?时时钟、总线、片选信号要远ÀI/O线线和接插件¡?时时钟线垂直ÓI/O线线比平行ÓI/O线线干扰小¡? I/O驱驱动电路尽量靠½PCB板板边,让其尽快离¿PC。。对进ÈPCB的的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射¡? MCU无无用端要接高,或接地,或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空¡?闲闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端¡?印印制板尽量使Ó45折折线而不Ó90折折线布线,以减小高频信号对外的发射与耦合¡?印印制板按频率和电流开关特性分区,噪声元件与非噪声元件呀距离再远一些¡?单单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗¡?模模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟¡?对¶A/D类类器件,数字部分与模拟部分不要交叉¡?元元件引脚尽量短,去藕电容引脚尽量短¡?关关键的线要尽量粗,并在两边加上保护地,高速线要短要直¡?对对噪声敏感的线不要与大电流,高速开关线并行¡?弱弱信号电路,低频电路周围不要形成电流环路¡?任任何信号都不要形成环路,如不可避免,让环路区尽量小¡?每每个集成电路有一个去藕电容。每个电解电容边上都要加一个小的高频旁路电容¡?用用大容量的钽电容或聚酷电容而不用电解电容做电路充放电储能电容,使用管状电容时,外壳要接地¡?对对干扰十分敏感的信号线要设置包地,可以有效地抑制串扰¡?信信号在印刷板上传输,其延迟时间不应大于所有器件的标称延迟时间¡环境效应原Ô要注意所应用的环境,例如在一个振动或者其他容易使板子变形的环境中采用过细的铜膜导线很容易起皮拉断等¡安全工作原Ô要保证安全工作,例如要保证两线最小间距要承受所加电压峰值,高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。组装方便、规范原则走线设计要考虑组装是否方便,例如印制板上有大面积地线和电源线区时(面积超¹500平平方毫米),应局部开窗口以方便腐蚀等。此外还要考虑组装规范设计,例如元件的焊接点用焊盘来表示,这些焊盘(包括过孔)均会自动不上阻焊油,但是如用填充块当表贴焊盘或用线段当金手指插头,而又不做特别处理,(在阻焊层画出无阻焊油的区域),阻焊油将掩盖这些焊盘和金手指,容易造成误解性错误£SMD器器件的引脚与大面积覆铜连接时,要进行热隔离处理,一般是做一¸Track到到铜箔,以防止受热不均造成的应力集Ö而导致虚焊£PCB上上如果有¦12或或方Ð12mm以以上的过孔时,必须做一个孔盖,以防止焊锡流出等。经济原则遵循该原则要求设计者要对加工,组装的工艺有足够的认识和了解,例È5mil的的线做腐蚀要±8mil难难,所以价格要高,过孔越小越贵等热效应原则在印制板设计时可考虑用以下几种方法:均匀分布热负载、给零件装散热器,局部或全局强迫风冷。从有利于散热的角度出发,印制板最好是直立安装,板与板的距离一般不应小Ó2c,,而且器件在印制板上的排列方式应遵循一定的规则£同一印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集³电路、电解电容等)放在冷却气流的最上(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却Æ流最下。在水平方向上,大功率器件尽量靠近印刷板的边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印刷板上方布置£以便减少这些器件在工作时对其他器件温度的影响。对温度比较敏感的器件最好安置在温度最低的区域(如设备的µ部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局¡设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动的路径,合理配置器件或印制电路板。采用合理的器件排列方式,可以有效地降低印制电路的温升。此外通过降额使用,做等温处理等方法也是热设计中经常使用的手段¡

    标签: PCB 布线原则

    上传时间: 2013-11-23

    上传用户:气温达上千万的

  • DN497 -为敏感电路提供过压及电源反接保护

    假如有人将 24V 电源连接到您的 12V 电路上,将发生什么? 倘若电源线和接地线因疏忽而反接,电路还能安然无恙吗? 您的应用电路是否工作于那种输入电源会瞬变至非常高压或甚至低于地电位的严酷环境中?即使此类事件的发生概率很低,但只要出现任何一种就将彻底损坏电路板。

    标签: 497 DN 敏感电路 保护

    上传时间: 2013-12-28

    上传用户:黄酒配奶茶

  • 德州仪器技术专家分享:LDO噪声详解

      随着通信信道的复杂度和可靠性不断增加,人们对于电信系统的要求和期望也不断提高。这些通信系统高度依赖于高性能、高时钟频率和数据转换器器 件,而这些器件的性能又非常依赖于系统电源轨的质量。当使用一个高噪声电源供电时,时钟或者转换器 IC 无法达到最高性能。仅仅只是少量的电源噪声,便会对性能产生极大的负面影响。本文将对一种基本 LDO 拓扑进行仔细研究,找出其主要噪声源,并给出最小化其输出噪声的一些方法。   表明电源品质的一个关键参数是其噪声输出,它常见的参考值为 RMS 噪声测量或者频谱噪声密度。为了获得最低 RMS 噪声或者最佳频谱噪声特性,线性电压稳压器(例如:低压降电压稳压器,LDO),始终比开关式稳压器有优势。这让其成为噪声敏感型应用的选择。   基本 LDO 拓扑   一个简单的线性电压稳压器包含一个基本控制环路,其负反馈与内部参考比较,以提供恒定电压—与输入电压、温度或者负载电流的变化或者扰动无关。    图 1 显示了一个 LDO 稳压器的基本结构图。红色箭头表示负反馈信号通路。输出电压 VOUT 通过反馈电阻 R1 和 R2 分压,以提供反馈电压 VFB。VFB 与误差放大器负输入端的参考电压 VREF 比较,提供栅极驱动电压 VGATE。最后,误差信号驱动输出晶体管 NFET,以对 VOUT 进行调节。    图 1 LDO 负反馈环路    简单噪声分析以图 2 作为开始。蓝色箭头表示由常见放大器差异代表的环路子集(电压跟随器或者功率缓冲器)。这种电压跟随器电路迫使 VOUT 跟随 VREF。VFB 为误差信号,其参考 VREF。在稳定状态下,VOUT 大于 VREF,其如方程式 1 所描述:

    标签: LDO 德州仪器

    上传时间: 2013-11-11

    上传用户:jiwy

  • 一款485通讯隔离产品的EMC设计与改善

    电子、电气产品的设计,必须保证在一定的电磁环境中能正常工作,既满足标准规定的抗干扰极限值要求,在受到一定的电磁干扰时,无性能降级或故障;又要满足标准规定的电磁辐射极限值的要求,对电磁环境不构成污染。所以,产品设计之初,就要从分析产品预期的电磁环境、干扰源、耦合途径和敏感部件入手,采用相应的技术措施,抑制干扰源、切断或削弱耦合途径,增强敏感部件的抗干扰能力等。文中详细介绍了一款485通讯隔离产品从辐射超标到顺利通过FCC CLASS B认证,在原理设计、PCB制板等多方面所做的各项改进措施。文中所提到的方法及规则,对产品EMC设计具有很大的参考及指导意义。

    标签: 485 EMC 通讯隔离

    上传时间: 2013-10-23

    上传用户:sz_hjbf

  • AL-TBP系列组合式过电压保护器

    AL-TBP系列组合式过电压保护器 随着真空开关的广泛使用,开断能力引发的各类操作过电压,对电力设备的保护提出了新的课题.由于中压电网(3~66kV)的一些特殊性,常规避雷器对各类操作过电压不敏感,起不到保护作用.组合式过电压保护器是解决这一难题而研制的新产品。该类产品采用四星型接法,设置公共中性点,不但可以大大降低相间过电压,而且相对地保护水平也有质的提高,起到了对真空开关操作过电压的有效限制。本公司产品为复合绝缘式,结构小巧紧凑、整体全封闭成型;选用优质金属氧化物阀片,工作特性高、安全方便;特别适合与KYN、XGN、GBC、JYN、GZS等不同型号的中压成套开关柜配合使用,或直接安装在小型箱式变电站内。 本产品使用于交流中压3~66kV电力系统,用于防止主要由真空开关产生的操作过电压对电力设备的损害,同时兼有防雷功能。 我公司产品技术标准,主要参考GB11032-2000《交流无间隙金属氧化物避雷器》、JB/T9672-2005《有串联间隙金属氧化物避雷器》、DL/T620-1997《交流电气装置的过电压保护和绝缘配置》、JB/T10496-2005《三相组合式无间隙金属氧化物避雷器》等上述标准生产过电压保护器产品,并在西安国家检测中心已通过了全部实验。

    标签: AL-TBP 组合式 过电压保护器

    上传时间: 2013-11-19

    上传用户:88mao