故障模型
共 74 篇文章
故障模型 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 74 篇文章,持续更新中。
反射式动态云纹法实验研究
摘 要 在沙丁(Cranz2Schardin)机基础上,实现了反射式动态云纹测量法.该法可用于不透明模型的动态位移,应变及应力场的研究.<BR>关键词 反射式,动态云纹法
模拟cmos集成电路设计(design of analog
<P>模拟集成电路的设计与其说是一门技术,还不如说是一门艺术。它比数字集成电路设计需要更严格的分析和更丰富的直觉。严谨坚实的理论无疑是严格分析能力的基石,而设计者的实践经验无疑是诞生丰富直觉的源泉。这也正足初学者对学习模拟集成电路设计感到困惑并难以驾驭的根本原因。.<BR>美国加州大学洛杉机分校(UCLA)Razavi教授凭借着他在美国多所著名大学执教多年的丰富教学经验和在世界知名顶级公司(AT&
基于Contourlet域HMT模型的Cycle Spinning去噪方法
<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">为了提高图像去噪效果,提出了基于Contourlet域HMT模型的Cycle Spinning去噪方法。首先将待去噪图像进行循环平移,使用Contour
C波段频率源设计及性能分析
<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px;">采用锁相环技术设计了一种稳定、低噪声的C波段频率源。建立了锁相环的相位噪声模型并分析影响相位噪声的因素,进行了锁相环低通滤波器的设计。利用软件对环路的稳定
IBIS模型之第2部分-IBIS模型总质量的确定
<div>
本文是三部曲系列文章的第 2 部分。第 1 部分(请见参考文献 1)讨论了数字输入/输出缓冲器信息规范 (IBIS) 仿真模型的基本要素,以及它们在 SPICE 环境中的产生过程。本文(第 2 部分)将研究 IBIS 模型正确性检测。第 3 部分将刊登在后续《模拟应用期刊》上,其将介绍 IBIS 用户如何对印刷电路板 (PCB)开发阶段出现的信号完整性问题进行研究。<br />
<
基于改进粒子群算法的舰船电力系统网络重构
<span id="LbZY">舰船电力系统网络重构可以看作为一个多目标、多约束、多时段、离散化的非线性规划最优问题。根据舰船电力系统特点,提出了一种改进的粒子群优化算法。在传统粒子群算法的基础上,运用混沌优化理论进行初始化粒子的初始种群,提升初始解质量;同时,引进遗传操作以改进粒子群算法易陷入局部极值的缺点。通过对典型的模型仿真表明,该算法具有更好的寻优性能,并且有效地提高了故障恢复的速度与精度
板级模拟电路仿真收敛性技术研究
<span id="LbZY">电路仿真不仅应用于电路设计阶段,也用于电路故障诊断中。电路仿真结果能够为建立电路测试诊断知识库提供重要的参考信息。本文简要介绍了电路仿真收敛性的相关理论,分析了板级模拟电路直流分析和瞬态分析的仿真收敛性问题,深入探讨了电路仿真技术的原理和发展,重点研究了新的电路仿真算法,并将其应用于模拟电路仿真系统中。<br />
<img alt="" src="http://d
基于EEMD的故障微弱信号特征提取研究
<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">总体平均经验模式分解(EEMD)方法是一种先进的时频分析方法,非常适合于对非平稳故障微弱信号的分析处理。文中介绍了EEMD方法的原理与算法实现步骤,重点
放大电路故障检修课件
<P> 一、电压放大电路故障检修技巧</P>
<P> 二、功率放大电路故障检修技巧</P>
<P> 三、显像管座板故障检修技巧</P>
<P> 按元器件分类有:分立元件放大电路,集成运算放大电路。</P>
<P> 按功能分类有:电压放大电路,功率放大电路,低频放大电路,高频放大电路等。</P>
<P><IMG src="http://adm.elecfans.com/soft/Uploa
一种简单可靠离散量信号电路的设计和实现
<span id="LbZY">基于目前航空电子设备离散量输入/输出电路实现复杂,分立器件多,高低温下参数不一致等现象,通过对比分析典型离散量电路,提出了一种简单、高可靠性的离散量信号电路设计,同时由于典型离散量输出电路故障率较高,提出了一种离散量输出信号的过流保护电路设计思路,采用电路仿真软件Multisim进行了功能仿真、容差分析,在实际工程应用中各项实验结果证明,该电路满足实际使用要求,具有
一种面向瞬时故障的容错技术的形式化方法
<span id="LbZY">软件发生瞬时故障时,可能会导致处理器状态改变,致使程序执行出现数据错误或者控制流错误。目前已有许多软件、硬件以及混合的解决方案,主要的方法是重复计算和检查副本的一致性。但是,生成正确的容错代码十分困难,而且几乎没有关于证明这些技术的正确性的研究。类型化汇编语言(TAL)是一种标准的程序安全性证明的方式。本文概述了一种面向瞬时故障的软硬结合的容错方法,以及对该方法的形
场效应管的h参数等效模型
主要介绍场效应管H参数的模型
最优噪声整形滤波器的设计
在需要对信号进行再量化的场合,可以通过加入dither来避免小信号再量化所产生的谐波失真,但同时会使噪声功率增加。这种情况下,可以利用人耳的心理声学特性,通过噪声整形来降低噪声的可闻性,提高实际的信噪比,改善音质。本文提出了两种新的设计最优噪声整形滤波器的方法-遗传算法和非线性优化算法,并分别实现了原采样率下和过采样率下基于心理声学模型的最优噪声整形滤波的设计。结果证明,该方法灵活方便、实现效果良
STD标准中信号模型同步和门控机制研究
<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px;">随着对IEEE1641标准研究的逐渐深入,信号的构建成为了研究重点。对信号模型进行同步和门控控制,可以影响到TSF(测试信号框架)模型的输出,从而达到控制
时钟分相技术应用
<p>
摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。<br />
关键词: 时钟分相技术; 应用<br />
中图分类号: TN 79 文献标识码:A 文章编号: 025820934 (2000) 0620437203<br />
时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的<br />
性能。尤其现代电子系统对性
高超声速飞行器的轨迹设计与仿真研究
<span id="LbZY">针对高超声速飞行器高速度、高升限、远巡航距离的特点,以高超声速巡航导弹X-43A为研究对象,对其动力学特性进行分析研究,建立飞行轨迹仿真所需要的气动模型、动力模型以及质量模型;并模拟高超声速巡航导弹X-43A试飞试验的飞行轨迹,建立各飞行段弹道仿真模型,构造飞行轨迹并进行仿真验证。仿真结果表明,所得到的轨迹符合高超声速飞行器的实际飞行情况,验证了该轨迹设计方法的可行
MOS管驱动基础和时间功耗计算
MOS关模型
<P>Cgs:由源极和沟道区域重叠的电极形成的,其电容值是由实际区域的大小和在不同工作条件下保持恒定。Cgd:是两个不同作用的结果。第一JFET区域和门电极的重叠,第二是耗尽区电容(非线性)。等效的Cgd电容是一个Vds电压的函数。Cds:也是非线性的电容,它是体二极管的结电容,也是和电压相关的。这些电容都是由Spec上面的Crss,Ciss和Coss决定的。由于Cgd同时在输入和输
西门子S7-300 PID用法
<p>
PID(比例-积分-微分)控制器作为最早实用化的控制器已有70多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。</p>
<p>
<img alt="" height="192" src="http://dl.eeworm.com/ele/img/319641-1201131H103596.jpg" st
一种改进的基于时间戳的空间音视频同步方法
<span id="LbZY">空间多媒体通信过程中存在的不可预测的分组数据丢失、乱序,可变的链路传输及处理时延抖动以及收发端时钟不同步与漂移等问题,这可能导致接收端在对音视频数据进行显示播放时产生音视频不同步现象。为了解决此问题,提出了一种改进的基于时间戳的空间音视频同步方法,该方法采用一种相对时间戳映射模型,结合接收端同步检测和缓冲设计,能够在无需全网时钟和反馈通道的情况下,实现空间通信中的音
低噪声放大器(LNA)
LNA的功能和指标<BR>二端口网络的噪声系数<BR>Bipolar LNA<BR>MOS LNA<BR>非准静态(NQS)模型和栅极感应噪声<BR>CMOS最小噪声系数和最佳噪声匹配<BR>参考文献<BR>LNA 的功能和指标<BR>• 第一级有源电路,其噪声、非线性、匹配等性<BR>能对整个接收机至关重要<BR>• 主要指标<BR>– 噪声系数(NF)<BR>取决于系统