励磁控制系统是同步发电机的重要组成部分,它的特性好坏直接影响电机及电力系统运行的可靠性和稳定性。 基于此,利用仿真的方式对励磁控制系统进行了研究并给出了相关结论,同时提出了一些新的控制算法,并建立了一个励磁控制系统仿真平台。 首先,从同步电机和励磁系统的模型入手,根据研究需要修改了同步电机的仿真模型,详细地介绍了检测单元、控制单元和励磁系统主回路模型,在总结普通PID调节方式不足的基础上提出了一种性能优越的非线性PID控制方式。 其次,分别在有刷和无刷励磁系统下,对普通PID、非线性PID和模糊自适应PID三种控制方式在阶跃响应和突变负载的情况下进行仿真,对输出的机端电压进行分析并得出相关结论。 除了对通用的励磁控制算法进行仿真分析外,提出了一种基于同步电机本身的励磁控制算法,这种控制方式是对励磁电流进行闭环控制,并辅以非线性的PID控制进行进行精度调节。针对这种方式,提出了两种实现方案。同样在有刷和无刷励磁系统下进行阶跃响应和突变负载的仿真分析研究。仿真测试表明,这种控制算法在控制的快速性和稳定性方面优于通用的控制方式。 最后,鉴于励磁控制系统仿真的重复性及操作的繁琐性,建立了一种基于MATLAB GUI的励磁控制仿真平台,借助此平台对SIMULINK模型操作,可以方便地实现对参数的设置与修改、模型的查看和修正、仿真的显示及相关的辅助操作等等,可以极大地简化仿真的操作过程,提高仿真的效率。另外,此平台的实现也为其它系统类型仿真界面的建立提供了重要的参考。
上传时间: 2013-04-24
上传用户:lwt123
高性能伺服控制系统日益广泛地应用于现代工业、家用电器和国防等各个领域。采用先进控制策略和全数字控制技术的永磁同步电机伺服系统,已成为高性能伺服系统发展的主流方向。应用在交流伺服系统上的背景技术不断进步,同时市场对伺服系统性能、成本及自适应能力的要求也不断提高。 本文从详细分析了永磁同步电机的数学模型和矢量控制的基本原理,选取了基于id=0转子磁场定向矢量控制方式,采用电压空间矢量(SVPWM)调制技术,建立了位置、转速、电流三闭环控制的永磁同步电机伺服系统。针对伺服系统在运行过程中参数变化及负载扰动等问题,深入分析了连续与离散系统滑模变结构控制器设计的基本原则和方法,将滑模变结构控制与矢量控制相结合,改进了基于趋近率的单段滑模面变结构控制,设计了适用于矢量控制位置伺服系统的分段式滑模变结构控制器。在Matlab/Simulink7.1仿真环境和以Freescale MC56F8346DSP为核心的实验系统平台进行了详尽的仿真和实验研究。结果表明本系统满足高性能伺服控制系统的基本要求,滑模变结构控制能够有效应用于矢量控制伺服系统并提高其鲁棒性。
上传时间: 2013-07-18
上传用户:yph853211
能源和环境的双重压力、电子技术与控制理论的飞速发展使得柴油机控制能够采用电子控制技术,并成为柴油机控制的研究热点。本文针对我国内燃机车牵引用的柴油机(12V240ZJ6E),主要研究其电控单体泵的电子控制技术。实现了电控单体泵在实验台上的电子控制,为最终降低内燃机车柴油机在轻载工况下的燃油消耗率并改善其排放打下基础。在以下三方面展开研究工作: 首先,根据柴油机的燃油喷射原理,深入研究高压燃油在泵-管-嘴系统中的传递规律,分析燃油喷射系统的各种电子控制方式,结合我国内燃机车柴油机改造的现状并参考国内外应用实例,确定采用“电控单体泵系统”方案。针对性地分析电控单体泵的特性,总结出电控单体泵的控制规律。 其次,设计电控单体泵的高速大流量电磁阀驱动模块,其性能直接影响电磁阀的响应特性。通过计算和试验对比的方法获得不同驱动电压、不同续流回路情况时的动态响应,找出最优电路参数和控制参数。用于多缸柴油机的驱动模块可以修正各单体泵喷油特性的差异。 第三,设计凸轮轴转速的测量模块。采集安装于凸轮轴上的测速齿轮的脉冲信号,计算凸轮轴的瞬时转速和相位,并对瞬时转速进行预测,为查找脉谱表以确定喷油定时和喷油量奠定基础。凸轮轴转速的预测方法为“相邻区间+自适应参数修正”。 最后,设计控制电路,以数字信号处理器为主控芯片。在数字信号处理器中完成柴油机的转速测量和电磁阀驱动脉冲生成。由于内燃机车上的电磁环境比较恶劣,采用了抗干扰措施。 通过上述工作,掌握了电控单体泵系统的基本特性,完成了电子控制单元主要电路的设计,并实现凸轮轴的测速和电磁阀的控制。电子控制单元在电控单体泵试验台上进行了试验。结果表明,测速准确、电磁阀驱动及其控制方式合理,为后续工作打下良好的基础。
上传时间: 2013-04-24
上传用户:xz85592677
电动车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动车无内燃机汽车工作时产生的废气,不产生排气污染,对环境保护和空气的洁净是十分有益的,几乎是“零污染”。电动汽车的研究表明,其能源效率已超过汽油机汽车。特别是在景区运行,汽车走走停停,行驶速度不高,电动汽车更加适宜。电机驱动及控制系统是电动汽车的核心,本文主要设计的是电动游览车用异步电动机的驱动控制系统。 本文设计了以IGBT作为开关元器件的主电路结构,通过多次改进结构,并设计采用了具有硬件互锁功能的驱动电路,进一步提高了主电路的可靠性。以TI公司生产的TMS320LF2407A芯片为系统控制核心,设计了控制电路以及保护电路;编写了以矢量控制作为核心算法、空间电压矢量控制作为PWM控制方式的控制程序。通过研究单神经元矢量控制的原理,进行了仿真,验证了单神经元矢量控制具有更好的快速性、鲁棒性和自适应性。 通过大量的实验和实际现场装车调试证明,本文设计的异步电动机控制系统可靠性高,动态性能良好,控制简单,适合在蓄电池供电的逆变器应用场合(电动车)。
上传时间: 2013-04-24
上传用户:1109003457
地铁列车牵引转矩控制是影响列车安全可靠运行的重要因素,牵引变流模块是整个列车交流传动系统的核心设备,而牵引转矩控制又是最关键的部分。本文以某城市国产化地铁列车为研究对象,主要针对牵引转矩控制方案进行研究并通过设计列车通信网络对牵引转矩实施监测。 论文首先介绍地铁列车牵引转矩控制的研究现状,分析目前高性能交流调速方法在地铁列车牵引转矩控制中的应用现状。并简要介绍了网络监测技术的研究现状和CANopen总线协议在轨道交通车辆中的国内外应用现状。 采用可编程逻辑控制器PLC及其子模块构建了通信网络的硬件结构,并设计了通信网络软件。对CANopen的通信报文进行了具体设计,实现了应用层协议CANopen的功能。 根据实际运行的需求,对牵引电机转矩控制、牵引逆变器的PWM控制方式进行了研究。采用带转矩内环的转速、磁链闭环矢量控制方法,应用带定时调制环节的滞环电流比较PWM和优化脉冲控制方案分段对逆变器进行PWM控制。通过设计牵引系统与CANopen网络的数据接口,实现了通信网络对牵引控制效果的监测,并对牵引特性曲线进行分析;选取特性曲线上的特定工作点,对牵引控制效果进行了分析说明。测试结果表明本文讨论的牵引矢量控制和PWM控制方案能够很好地满足列车运营对牵引转矩的要求。 目前,该系统正在进行线路运行调试和性能改进,准备交付用户进行商业线路运营,具有很好的工程应用价值。
上传时间: 2013-08-02
上传用户:LYNX
逆变器广泛应用于工业生产的各个方面,数字控制具有方便实现复杂算法、抗干扰性强和产品容易升级等优点,已成为未来逆变器的发展趋势。使用数字技术控制设计逆变器,控制器的性能决定了逆变系统系统的性能。然而在很多高频应用的场合,目前常用的控制器的速度往往不能完全达到要求。与传统单片机和DSP芯片相比,FPGA器件具有更高的处理速度。同时FPGA应用在数字化逆变器设计中,还可以大大简化控制系统结构,并可实现多种高速算法,具有较高的性价比。在逆变器的全数字化控制领域,FPGA具有很好的应用价值。 论文首先介绍了SPWM基本原理及其控制方式,SPWM的生成方法,并结合本课题给出了查表法生成SPWM波的一般方法,且以单相全桥逆变器为例进行了仿真。分析其的电路特点,建立PWM逆变器的统一电路模型、连续状态空间以及离散状态空间模型,在此数学模型基础上,针对逆变器研究分析了目前用于逆变器设计的各种数字控制技术、控制方案,讨论了其控制方法的优缺点,相关控制器设计的一般问题,最后比较了其优缺点,指出其存在的共性问题,总结了使用FPGA设计逆变器数字控制器的优势。然后以单相电压型PWM逆变器为控制模型采用新型模数结合现场可编程门阵列FPGA实现数字化控制器的方案,给出了纯正正弦波逆变器的设计方案。 论文详细论述了采用模数混合型FPGA作为主控芯片的高频逆变器设计方法与实现过程。系统主控芯片采用Fusion系列AFS600,世界上首个模数混合型FPGA。主要设计要点包括:逆变器硬件电路设计以及SPWM数字控制系统软件设计。外围强电电路的设计的难点在于用于前端升压的高频变压器的设计以及输出端LC滤波电感与电容的选取。另外,SPWM“H”字全桥逆变电路中的高悬浮电压也是设计中需要值得注意的重要环节。在控制系统软件设计方面,采用FPGA自上而下的设计方法,对其控制系统进行了功能划分,完成了SPWM产生器以及加入死区补偿的PWM发生器、和反馈等模块的设计。 论文的结束部分给出了设计结果,并指出了进一步的工作的思路和方向。
上传时间: 2013-05-19
上传用户:小码农lz
世界能源危机和环境恶化促使开发利用可再生能源和各种绿色能源以实现可持续发展成为人类当前的首要任务。而随着太阳能电池和电力电子技术的不断进步,光伏发电技术和产业不仅是当今能源的一个重要补充,更具备成为未来主要能源的潜力。当前,光伏发电不断向低成本、高效率和高功率密度方向发展,太阳能光伏利用的主要形式将是并网发电系统。 @@ 本文主要工作是研究一种光伏发电并网/独立双模式逆变器的控制策略,这种逆变器不仅可靠性好,而且能提高可再生能源利用率。文章对光伏发电应用形式和并网逆变器的分类进行了阐述,综合考虑可靠性、工作效率和成本,选择两级全桥结构逆变器作为研究对象,该拓扑结构多应用于小型并网逆变器。 @@ 通过分析比较各种电流控制方式,选择单极性SPWM控制方式来产生本文逆变器控制信号。根据系统具体情况,在不同的运行模式下应用不同的控制策略。并网运行时,电网决定逆变器的输出电压,逆变器看作电流源,采用电流双闭环控制输出电流;独立运行时,逆变器采用电流电压闭环控制输出电压。并利用MATLAB Simulink对两种模式下工作的单相和三相逆变器进行仿真。依据瞬时无功理论,提出一种应用在三相电路的软件锁相环,仿真结果显示该锁相环锁相效果良好。 @@ 双模式逆变器在两种模式间切换的时候,容易对负载、电网和电源本身造成冲击和干扰,需要采取有效的切换控制方法来减少这种影响。本文详细分析了独立模式和并网模式之间切换过程,并对不同的切换顺序进行比较,并给出一种两种模式间无缝切换的控制方法。利用MATLAB Simulink对单相和三相逆变器两种模式间切换过程进行建模仿真,结果证明了这种模式切换方法的可行性。 @@ 介绍了以DSP(TMS320F2812)为核心的控制电路,并对部分硬件设计进行了分析,给出了部分软件流程图。 @@关键字:光伏发电系统;逆变器;并网运行;独立运行;无缝切换
上传时间: 2013-04-24
上传用户:打算打算
无功补偿对于现代电力系统的运行与稳定性来说是必不可少的。静止无功发生器(SVG)经过了三十多年的发展,已经在无功补偿技术上得到广泛的应用。它具备优越的动态性能,可以大大提高电力系统的电压调整能力和系统稳定性,进而提高电力系统的输电能力。在我国,充分发挥SVG的作用,显得尤为迫切。 本文论述了SVG的发展概况,研究了SVG的工作原理,对大容量的主电路结构进行了比较分析,并在此基础上建立了SVG的稳态数学模型和标幺值数学模型。然后,阐述了瞬时无功功率理论,给出了无功电流检测的具体算法,并利用MATLAB仿真软件对该算法进行了仿真实现。接下来研究比较了SVG的两种传统控制策略,介绍了几种PWM触发技术,其中着重研究了空间矢量PWM(SVPWM)的算法。利用MATLAB仿真软件对基于传统电流间接闭环控制算法的SVG进行了系统级仿真实现,在与电流直接控制的SVG仿真结果做对比后,指出各自的补偿特点。文章重点在结合以上算法各自的优缺点、电网本身的大扰动和电力系统对SVG控制性能的严格要求后,给出了一种新型电压电流双闭环的控制方法。其中电流内环采用瞬时无功电流的PI反馈控制,PI值根据系统数学模型中iq△δ的比例关系,采用了齐格勒-尼柯尔斯法则进行整定;而电压外环则采用系统动态电压的智能遗传PI反馈控制,利用智能遗传算法对PI值进行整定。用MATLAB/SIMULINK分别对两个环节的控制算法进行了仿真,并针对外环控制器的遗传PI算法,与PI算法的仿真结果做了对比,证明了遗传PI的优越性,为基于双闭环控制的SVG系统级仿真打下了基础。最后,文章利用MATLAB/SIMULINK/PSB对新型电压电流双闭环系统的SVG进行了仿真实现,并对在电网不同情况下的补偿效果与传统电流间接控制的SVG进行了分析与比较。仿真结果表明该控制方式具有更好的动态性能。
上传时间: 2013-04-24
上传用户:skfreeman
三相逆变器作为交流供电电源的主要部分,广泛地应用于电动车、电力设备、产业设备、交通车辆等领域。逆变器的并联控制技术以其广泛的应用前景也得到越来越深入地研究。人们对逆变电源的要求越来越高,高性能、高可靠性的大功率逆变器就是当今逆变电源的发展趋势之一。提高逆变电源容量主要有两个途径,设计大功率的逆变器和采用逆变器并联技术实现电源模块化。 为此,本文以两台400kVA组合式三相逆变器为对象,采用全数字化控制方式,主要研究了大功率三相逆变器的波形控制技术和并联控制技术。本文围绕大功率组合式三相逆变器,对其主电路结构、系统的数学模型、波形控制技术以及并联系统模型、并联控制方案进行了较为详细的分析和研究。分析了适用于大功率的组合式三相逆变器结构,并给出了400kVA组合式三相逆变器的主电路设计。建立和分析了组合式三相逆变器在ABC、αβ、dq 坐标系下的数学模型。针对大功率组合式三相逆变器,采用在dq 坐标系下的三相电压闭环统一控制方案。为了使大功率三相逆变器得到较好的输出电压波形质量,采用PID 瞬时值电压反馈控制和重复控制并联结合的控制方案。分析了PID 控制器和重复控制器的原理,并针对400kVA 三相逆变器的系统性能,给出了相应数字PID 控制器和重复控制器的设计。并利用Matlab 建立了系统的仿真模型,给出了理论研究结果。提出了有效提高系统动态性能的两种方法:加负载电流前馈和动态过程中强制改变改变调制比。介绍了大功率三相逆变器的短路限流保护技术,提出了采用瞬时值限流电路和单独的软件限流环相结合的方案,保证大功率三相逆变器在短路时自动限流保护。对两台大功率三相逆变器组成的并联系统的结构、环流特性及逆变器的输出功率进行了分析。详细分析了输出阻抗特性不同时,逆变器环流和输出功率分配的差异,得出了输出阻抗对环流和功率影响的一般规律。针对大功率三相逆变器并联系统,采用基于功率误差的分散逻辑控制方案。分析了基于功率误差的分散逻辑控制原理,逆变器输出功率的检测和母线信号综合的脉宽调制原理。根据400kVA 三相逆变器并联系统的输出阻抗特性,采用了无功调节输出电压幅值和同步锁相实现相位同步的并联控制策略。 本文最后在两台400kVA组合式三相逆变器样机上得到了实验验证。实验结果进一步验证了大功率三相逆变器的波形控制和并联控制策略有效可行性。
上传时间: 2013-07-03
上传用户:coolloo
随着能源的紧张和环境污染日益严重,开发和利用太阳能已受到越来越多的重视。通过光伏并网发电系统将太阳能转换为电能,并将电能输送到电网上,是太阳能利用的主要形式。 本文对光伏并网发电系统的控制策略进行了深入的研究。首先,分析了太阳能电池发电的基本原理,得出了太阳能电池的等效模型,通过分析太阳能电池的I-V特性,可以看出太阳能电池是一非线性电源,而且输出电能受环境温度和光照强度的影响,为了使太阳能电池能够最大效率地将太阳能转化为电能,需要对其进行最大功率点跟踪。通过分析和对比各种最大功率点跟踪方法的优缺点,采用了改进扰动观察法结合BOOST升压电路来对电池板进行最大功率点跟踪的方案。其次,分析对比并网电流的各种控制方式,确定采用滞环比较方式对并网电流进行控制,为了使并网电流稳定可靠地向电网送电,采用双闭环控制策略对并网逆变器进行控制,使逆变器输出电流能与电网电压同频同相,以单位功率因数向电网输电。最后,对光伏并网发电系统的孤岛效应进行了研究,介绍了各种孤岛检测方法,分析了基于正反馈的主动移频式孤岛检测方法(AFDPF)的参数优化方案,为AFDPF检测盲区的分析提供理论依据。 本文在MATLAB/Simulink仿真环境下,利用SimPowerSystems功能模块建立了仿真模型,对太阳能电池板的数学模型,最大功率点跟踪控制策略,并网控制策略进行验证仿真。仿真结果证明了本文的方案和控制策略的正确性。
上传时间: 2013-07-14
上传用户:prczsf