📚 微粒群算法技术资料

📦 资源总数:30259
💻 源代码:29170
粒子群优化(ParticleSwarmOptimization,PSO),又称微粒群算法,是由J.Kennedy和R.C.Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M.M.Millonas在开发应用于人工生命(artificiallife)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

🔥 微粒群算法热门资料

查看全部30259个资源 »

粒子群算法是在遗传算法基础上发展起来的一种新的并行优化方法,可用于解决大量非线性、不可微和多峰值的复杂问题。与遗传算法不同的是,粒子群算法中的粒子有记忆功能,整个搜索过程是跟随当前最优粒子的过程,因此在大多数情况下,所有的粒子可能更快的收敛于最优解。而且粒子群算法理论简单,参数少,因此其应用更为广泛...

📅 👤 lz4v4

💻 微粒群算法源代码

查看更多 »
📂 微粒群算法资料分类