功放的喇叭延时保护电路
上传时间: 2022-06-10
上传用户:1208020161
电子发烧友网讯:应广大电子发烧友网读者要求,本电子书《C51单片机及C语言知识点必备秘籍》为《单片机关键知识点全攻略》单片机系列教程及《单片机C语言知识点全攻略》系列单片机C语言学习教程的全整合篇,供所需学习或收藏的工程师及单片机学生、单片机爱好者下载。 点击下载《C51单片机及C语言知识点必备秘籍》电子书 单片机对于初学者来说确实很难理解,不少学过单片机的同学或电子爱好者,甚至在毕业时仍旧是一无所获。基于此,电子发烧友网将整合《单片机关键知识点全攻略》,共分为四个系列,以飨读者,敬请期待!此系列对于业内电子工程师也有收藏和参考价值。 单片机关键知识点一览: 系列一 1:单片机简叙 2:单片机引脚介绍 3:单片机存储器结构 4:第一个单片机小程序 5:单片机延时程序分析 6:单片机并行口结构 7:单片机的特殊功能寄存器 系列二 8:单片机寻址方式与指令系统 9:单片机数据传递类指令 10:单片机数据传送类指令 11:单片机算术运算指令 12:单片机逻辑运算类指令 13:单片机逻辑与或异或指令祥解 14:单片机条件转移指令 系列三 15:单片机位操作指令 16:单片机定时器与计数器 17:单片机定时器/计数器的方式 18:单片机的中断系统 19:单片机定时器、中断试验 20:单片机定时/计数器实验 21:单片机串行口介绍 系列四 22:单片机串行口通信程序设计 23:LED数码管静态显示接口与编 24:动态扫描显示接口电路及程序 25:单片机键盘接口程序设计 26:单片机矩阵式键盘接口技术及 27:关于单片机的一些基本概念 28:实际案例实践——单片机音乐程序设计 继《单片机学习知识点全攻略》得到广大读者好评,根据有网友提出美中不足的是所用单片机编程语言为汇编,基于此,电子发烧友网再接再厉再次为读者诚挚奉上非常详尽的《单片机C语言知识点全攻略》系列单片机C语言学习教程,本教程共分为四部分,主要知识点如下所示。 第一部分知识点: 第一课 建立你的第一个KeilC51项目 第二课 C51HEX文件的生成和单片机 第三课 C51数据类型 第四课 C51常量 第二部分知识点: 第五课 C51变量 第六课 C51运算符和表达式 第七课 运算符和表达式(关系运算符) 第八课 运算符和表达式(位运算符) 第九课 C51运算符和表达式(指针和地址运算符) 第三部分知识点: 第十课 C51表达式语句及仿真器 第十一课 C51复合语句和条件语句 第十二课 C51开关分支语句 第十三课 C51循环语句 第十四课 C51函数 第四部分知识点: 第十五课 C51数组的使用 第十六课 C51指针的使用 第十七课 C51结构、联合和枚举的使用 附录(运算符优先级和结合性等)
上传时间: 2013-11-03
上传用户:Amygdala
单片机入门基础知识大全免费下载 单片机第八课(寻址方式与指令系统) 通过前面的学习,我们已经了解了单片机内部的结构,并且也已经知道,要控制单片机,让它为我们干学,要用指令,我们已学了几条指令,但很零散,从现在开始,我们将要系统地学习8051的指令部份。 一、概述 1、指令的格式 我们已知,要让计算机做事,就得给计算机以指令,并且我们已知,计算机很“笨”,只能懂得数字,如前面我们写进机器的75H,90H,00H等等,所以指令的第一种格式就是机器码格式,也说是数字的形式。但这种形式实在是为难我们人了,太难记了,于是有另一种格式,助记符格式,如MOV P1,#0FFH,这样就好记了。 这两种格式之间的关系呢,我们不难理解,本质上它们完全等价,只是形式不一样而已。 2、汇编 我们写指令使用汇编格式,而计算机只懂机器码格式,所以要将我们写的汇编格式的指令转换为机器码格式,这种转换有两种方法:手工汇编和机器汇编。手工汇编实际上就是查表,因为这两种格式纯粹是格式不同,所以是一一对应的,查一张表格就行了。不过手工查表总是嫌麻烦,所以就有了计算机软件,用计算机软件来替代手工查表,这就是机器汇编。 二、寻址 让我们先来复习一下我们学过的一些指令:MOV P1,#0FFH,MOV R7,#0FFH这些指令都是将一些数据送到相应的位置中去,为什么要送数据呢?第一个因为送入的数可以让灯全灭掉,第二个是为了要实现延时,从这里我们可以看出来,在用单片机的编程语言编程时,经常要用到数据的传递,事实上数据传递是单片机编程时的一项重要工作,一共有28条指令(单片机共111条指令)。下面我们就从数据传递类指令开始吧。 分析一下MOV P1,#0FFH这条指令,我们不难得出结论,第一个词MOV是命令动词,也就是决定做什么事情的,MOV是MOVE少写了一个E,所以就是“传递”,这就是指令,规定做什么事情,后面还有一些参数,分析一下,数据传递必须要有一个“源”也就是你要送什么数,必须要有一个“目的”,也就是你这个数要送到什么地方去,显然在上面那条指令中,要送的数(源)就是0FFH,而要送达的地方(目的地)就是P1这个寄存器。在数据传递类指令中,均将目的地写在指令的后面,而将源写在最后。 这条指令中,送给P1是这个数本身,换言之,做完这条指令后,我们可以明确地知道,P1中的值是0FFH,但是并不是任何时候都可以直接给出数本身的。例如,在我们前面给出的延时程序例是这样写的: MAIN: SETB P1.0 ;(1) LCALL DELAY ;(2) CLR P1.0 ;(3) LCALL DELAY ;(4) AJMP MAIN ;(5) ;以下子程序 DELAY: MOV R7,#250 ;(6) D1: MOV R6,#250 ;(7) D2: DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) END ;(11) 表1 MAIN: SETB P1.0 ;(1) MOV 30H,#255 LCALL DELAY ; CLR P1.0 ;(3) MOV 30H,#200 LCALL DELAY ;(4) AJMP MAIN ;(5) ;以下子程序 DELAY: MOV R7,30H ;(6) D1: MOV R6,#250 ;(7) D2: DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) END ;(11) 表2 这样一来,我每次调用延时程序延时的时间都是相同的(大致都是0.13S),如果我提出这样的要求:灯亮后延时时间为0.13S灯灭,灯灭后延时0.1秒灯亮,如此循环,这样的程序还能满足要求吗?不能,怎么办?我们可以把延时程序改成这样(见表2):调用则见表2中的主程,也就是先把一个数送入30H,在子程序中R7中的值并不固定,而是根据30H单元中传过来的数确定。这样就可以满足要求。 从这里我们可以得出结论,在数据传递中要找到被传递的数,很多时候,这个数并不能直接给出,需要变化,这就引出了一个概念:如何寻找操作数,我们把寻找操作数所在单元的地址称之为寻址。在这里我们直接使用数所在单元的地址找到了操作数,所以称这种方法为直接寻址。除了这种方法之外,还有一种,如果我们把数放在工作寄存器中,从工作寄存器中寻找数据,则称之为寄存器寻址。例:MOV A,R0就是将R0工作寄存器中的数据送到累加器A中去。提一个问题:我们知道,工作寄存器就是内存单元的一部份,如果我们选择工作寄存器组0,则R0就是RAM的00H单元,那么这样一来,MOV A,00H,和MOV A,R0不就没什么区别了吗?为什么要加以区分呢?的确,这两条指令执行的结果是完全相同的,都是将00H单元中的内容送到A中去,但是执行的过程不同,执行第一条指令需要2个周期,而第二条则只需要1个周期,第一条指令变成最终的目标码要两个字节(E5H 00H),而第二条则只要一个字节(E8h)就可以了。 这么斤斤计较!不就差了一个周期吗,如果是12M的晶振的话,也就1个微秒时间了,一个字节又能有多少? 不对,如果这条指令只执行一次,也许无所谓,但一条指令如果执行上1000次,就是1毫秒,如果要执行1000000万次,就是1S的误差,这就很可观了,单片机做的是实时控制的事,所以必须如此“斤斤计较”。字节数同样如此。 再来提一个问题,现在我们已知,寻找操作数可以通过直接给的方式(立即寻址)和直接给出数所在单元地址的方式(直接寻址),这就够了吗? 看这个问题,要求从30H单元开始,取20个数,分别送入A累加器。 就我们目前掌握的办法而言,要从30H单元取数,就用MOV A,30H,那么下一个数呢?是31H单元的,怎么取呢?还是只能用MOV A,31H,那么20个数,不是得20条指令才能写完吗?这里只有20个数,如果要送200个或2000个数,那岂不要写上200条或2000条命令?这未免太笨了吧。为什么会出现这样的状况?是因为我们只会把地址写在指令中,所以就没办法了,如果我们不是把地址直接写在指令中,而是把地址放在另外一个寄存器单元中,根据这个寄存器单元中的数值决定该到哪个单元中取数据,比如,当前这个寄存器中的值是30H,那么就到30H单元中去取,如果是31H就到31H单元中去取,就可以解决这个问题了。怎么个解决法呢?既然是看的寄存器中的值,那么我们就可以通过一定的方法让这里面的值发生变化,比如取完一个数后,将这个寄存器单元中的值加1,还是执行同一条指令,可是取数的对象却不一样了,不是吗。通过例子来说明吧。 MOV R7,#20 MOV R0,#30H LOOP:MOV A,@R0 INC R0 DJNZ R7,LOOP 这个例子中大部份指令我们是能看懂的,第一句,是将立即数20送到R7中,执行完后R7中的值应当是20。第二句是将立即数30H送入R0工作寄存器中,所以执行完后,R0单元中的值是30H,第三句,这是看一下R0单元中是什么值,把这个值作为地址,取这个地址单元的内容送入A中,此时,执行这条指令的结果就相当于MOV A,30H。第四句,没学过,就是把R0中的值加1,因此执行完后,R0中的值就是31H,第五句,学过,将R7中的值减1,看是否等于0,不等于0,则转到标号LOOP处继续执行,因此,执行完这句后,将转去执行MOV A,@R0这句话,此时相当于执行了MOV A,31H(因为此时的R0中的值已是31H了),如此,直到R7中的值逐次相减等于0,也就是循环20次为止,就实现了我们的要求:从30H单元开始将20个数据送入A中。 这也是一种寻找数据的方法,由于数据是间接地被找到的,所以就称之为间址寻址。注意,在间址寻址中,只能用R0或R1存放等寻找的数据。 二、指令 数据传递类指令 1) 以累加器为目的操作数的指令 MOV A,Rn MOV A,direct MOV A,@Ri MOV A,#data 第一条指令中,Rn代表的是R0-R7。第二条指令中,direct就是指的直接地址,而第三条指令中,就是我们刚才讲过的。第四条指令是将立即数data送到A中。 下面我们通过一些例子加以说明: MOV A,R1 ;将工作寄存器R1中的值送入A,R1中的值保持不变。 MOV A,30H ;将内存30H单元中的值送入A,30H单元中的值保持不变。 MOV A,@R1 ;先看R1中是什么值,把这个值作为地址,并将这个地址单元中的值送入A中。如执行命令前R1中的值为20H,则是将20H单元中的值送入A中。 MOV A,#34H ;将立即数34H送入A中,执行完本条指令后,A中的值是34H。 2)以寄存器Rn为目的操作的指令 MOV Rn,A MOV Rn,direct MOV Rn,#data 这组指令功能是把源地址单元中的内容送入工作寄存器,源操作数不变。
上传时间: 2013-10-13
上传用户:3294322651
单片机音乐中音调和节拍的确定方法:调号-音乐上指用以确定乐曲主音高度的符号。很明显一个八度就有12个半音。A、B、C、D、E、F、G。经过声学家的研究,全世界都用这些字母来表示固定的音高。比如,A这个音,标准的音高为每秒钟振动440周。 升C调:1=#C,也就是降D调:1=BD;277(频率)升D调:1=#D,也就是降E调:1=BE;311升F调:1=#F,也就是降G调:1=BG;369升G调:1=#G,也就是降A调:1=BA;415升A调:1=#A,也就是降B调:1=BB。466,C 262 #C277 D 294 #D(bE)311 E 330 F 349 #F369 G 392 #G415A 440. #A466 B 494 所谓1=A,就是说,这首歌曲的“导”要唱得同A一样高,人们也把这首歌曲叫做A调歌曲,或叫“唱A调”。1=C,就是说,这首歌曲的“导”要唱得同C一样高,或者说“这歌曲唱C调”。同样是“导”,不同的调唱起来的高低是不一样的。各调的对应的标准频率为: 单片机演奏音乐时音调和节拍的确定方法 经常看到一些刚学单片机的朋友对单片机演奏音乐比较有兴趣,本人也曾是这样。在此,本人将就这方面的知识做一些简介,但愿能对单片机演奏音乐比较有兴趣而又不知其解的朋友能有所启迪。 一般说来,单片机演奏音乐基本都是单音频率,它不包含相应幅度的谐波频率,也就是说不能象电子琴那样能奏出多种音色的声音。因此单片机奏乐只需弄清楚两个概念即可,也就是“音调”和“节拍”。音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。 在音乐中所谓“音调”,其实就是我们常说的“音高”。在音乐中常把中央C上方的A音定为标准音高,其频率f=440Hz。当两个声音信号的频率相差一倍时,也即f2=2f1时,则称f2比f1高一个倍频程, 在音乐中1(do)与 ,2(来)与 ……正好相差一个倍频程,在音乐学中称它相差一个八度音。在一个八度音内,有12个半音。以1—i八音区为例, 12个半音是:1—#1、#1—2、2—#2、#2—3、3—4、4—#4,#4—5、5一#5、#5—6、6—#6、#6—7、7—i。这12个音阶的分度基本上是以对数关系来划分的。如果我们只要知道了这十二个音符的音高,也就是其基本音调的频率,我们就可根据倍频程的关系得到其他音符基本音调的频率。 知道了一个音符的频率后,怎样让单片机发出相应频率的声音呢?一般说来,常采用的方法就是通过单片机的定时器定时中断,将单片机上对应蜂鸣器的I/O口来回取反,或者说来回清零,置位,从而让蜂鸣器发出声音,为了让单片机发出不同频率的声音,我们只需将定时器予置不同的定时值就可实现。那么怎样确定一个频率所对应的定时器的定时值呢?以标准音高A为例: A的频率f = 440 Hz,其对应的周期为:T = 1/ f = 1/440 =2272μs 由上图可知,单片机上对应蜂鸣器的I/O口来回取反的时间应为:t = T/2 = 2272/2 = 1136μs这个时间t也就是单片机上定时器应有的中断触发时间。一般情况下,单片机奏乐时,其定时器为工作方式1,它以振荡器的十二分频信号为计数脉冲。设振荡器频率为f0,则定时器的予置初值由下式来确定: t = 12 *(TALL – THL)/ f0 式中TALL = 216 = 65536,THL为定时器待确定的计数初值。因此定时器的高低计数器的初值为: TH = THL / 256 = ( TALL – t* f0/12) / 256 TL = THL % 256 = ( TALL – t* f0/12) %256 将t=1136μs代入上面两式(注意:计算时应将时间和频率的单位换算一致),即可求出标准音高A在单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值为 : TH440Hz = (65536 – 1136 * 12/12) /256 = FBH TL440Hz = (65536 – 1136 * 12/12)%256 = 90H根据上面的求解方法,我们就可求出其他音调相应的计数器的予置初值。 音符的节拍我们可以举例来说明。在一张乐谱中,我们经常会看到这样的表达式,如1=C 、1=G …… 等等,这里1=C,1=G表示乐谱的曲调,和我们前面所谈的音调有很大的关联, 、 就是用来表示节拍的。以 为例加以说明,它表示乐谱中以四分音符为节拍,每一小结有三拍。比如: 其中1 、2 为一拍,3、4、5为一拍,6为一拍共三拍。1 、2的时长为四分音符的一半,即为八分音符长,3、4的时长为八分音符的一半,即为十六分音符长,5的时长为四分音符的一半,即为八分音符长,6的时长为四分音符长。那么一拍到底该唱多长呢?一般说来,如果乐曲没有特殊说明,一拍的时长大约为400—500ms 。我们以一拍的时长为400ms为例,则当以四分音符为节拍时,四分音符的时长就为400ms,八分音符的时长就为200ms,十六分音符的时长就为100ms。可见,在单片机上控制一个音符唱多长可采用循环延时的方法来实现。首先,我们确定一个基本时长的延时程序,比如说以十六分音符的时长为基本延时时间,那么,对于一个音符,如果它为十六分音符,则只需调用一次延时程序,如果它为八分音符,则只需调用二次延时程序,如果它为四分音符,则只需调用四次延时程序,依次类推。通过上面关于一个音符音调和节拍的确定方法,我们就可以在单片机上实现演奏音乐了。具体的实现方法为:将乐谱中的每个音符的音调及节拍变换成相应的音调参数和节拍参数,将他们做成数据表格,存放在存储器中,通过程序取出一个音符的相关参数,播放该音符,该音符唱完后,接着取出下一个音符的相关参数……,如此直到播放完毕最后一个音符,根据需要也可循环不停地播放整个乐曲。另外,对于乐曲中的休止符,一般将其音调参数设为FFH,FFH,其节拍参数与其他音符的节拍参数确定方法一致,乐曲结束用节拍参数为00H来表示。下面给出部分音符(三个八度音)的频率以及以单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值 : C调音符 频率Hz 262 277 293 311 329 349 370 392 415 440 466 494TH/TL F88B F8F2 F95B F9B7 FA14 FA66 FAB9 FB03 FB4A FB8F FBCF FC0BC调音符 1 1# 2 2# 3 4 4# 5 5# 6 6# 7频率Hz 523 553 586 621 658 697 739 783 830 879 931 987TH/TL FC43 FC78 FCAB FCDB FD08 FD33 FD5B FD81 FDA5 FDC7 FDE7 FE05C调音符 频率Hz 1045 1106 1171 1241 1316 1393 1476 1563 1658 1755 1860 1971TH/TL FB21 FE3C FE55 FE6D FE84 FE99 FEAD FEC0 FE02 FEE3 FEF3 FF02
上传时间: 2013-10-20
上传用户:哈哈haha
基于PC机的电子琴设计 一、实验目的1.掌握利用pc机扬声器发出声音的方法。2.学习利用系统功能调用从键盘上读取字符的方法。 二、实验内容与要求利用PC机和扬声器实现简易电子琴的功能。 1.基本要求(1)电子琴功能,编写程序,程序运行时使pc机成为一架可弹奏的“钢琴”。当按下PC机键盘数字键1-8时,依次发出1,2,3,4,5,6,7,i八个音调。(2)音乐盒功能,内部存储至少2首以上的乐曲,根据菜单选择播放。2.提高要求(1)使一组放光二极管随音调变化而改变,实现音乐彩灯 (2)能够实现高、中、低音的选择。 (3)能够存储弹奏的内容,进行回放。 三、实验报告要求 1.设计目的和内容 2.总体设计 3.硬件设计:原理图(接线图)及简要说明 4.软件设计框图及程序清单 5.设计结果和体会(包括遇到的问题及解决的方法) 四、设计原理要使扬声器发出不同的音调,就得输入不同频率的波形。通过给8253定时/计数器装入不同的计数值,可以使其输出不同频率的方波。经过放大器的放大作用,便可驱动扬声器发出不同的音调,只要插入一段延时程序之后,再将扬声器切断,音调的声音就可以持续一端时间。通过计算机的不同按键输出不同的音调,需要使用系统调用功能以接收键入字符,并且要建立一张表,使键入字符与频率构成一个对应关系。
上传时间: 2013-10-16
上传用户:xlcky
15-1.实现定时的方法15-2.定时器/计数器的结构和工作原理 15-3.定时器/计数器的控制15-4.定时器/计数器的工作方式 15-5.定时器/计数器应用 软件定时软件延时不占用硬件资源,但占用了CPU时间,降低了CPU的利用率。例如延时程序。采用时基电路定时例如采用555电路,外接必要的元器件(电阻和电容),即可构成硬件定时电路。但在硬件连接好以后,定时值与定时范围不能由软件进行控制和修改,即不可编程,且定时时间容易漂移。可编程定时器定时最方便的办法是利用单片机内部的定时器/计数器。结合了软件定时精确和硬件定时电路独立的特点。定时器/计数器的结构 定时器/计数器的实质是加1计数器(16位),由高8位和低8位两个寄存器组成。TMOD是定时器/计数器的工作方式寄存器,确定工作方式和功能;TCON是控制寄存器,控制T0、T1的启动和停止及设置溢出标志。
上传时间: 2014-12-28
上传用户:rnsfing
#include <reg51.h>#include<intrins.h> #define BUSY1 (DQ1==0) sbit DQ1 = P0^4; unsigned char idata TMP; unsigned char idata TMP_d; unsigned char f; void wr_ds18_1(char dat);unsigned char rd_ds18_1(); /***************延时程序,单位us,大于10us*************/void time_delay(unsigned char time){ time=time-10; time=time/6; while(time!=0)time--;} /*****************************************************//* reset ds18b20 *//*****************************************************/void ds_reset_1(void){ unsigned char idata count=0; DQ1=0; time_delay(240); time_delay(240); DQ1=1; return;}
上传时间: 2013-10-29
上传用户:sssnaxie
51汇编程序实例:举一例说明:流水灯加数码管 LOOP: ; 标号CLR P2.6 ;选中p2.6 数码管左边的8字使能SETB P2.7 ;p2.7不使能。 右边的数码管消隐MOV P0,#28H ;把28h送p0口;数码管显示 0LCALL DELAY ;延时MOV P0,#0FFH ;0ffh 送p0口,数码管清除CLR P1.0 ;点亮p1.0发光管MOV P0,#7EH ;把7eh送p0口;数码管显示 1LCALL DELAYMOV P0,#0FFHCLR P1.1 ;点亮p1.0发光管CLR P1.0 ;点亮p1.0发光管MOV P0,#0A2H ;数码管显示 2LCALL DELAYMOV P0,#0FFHCLR P1.2CLR P1.1CLR P1.0MOV P0,#62H ;数码管显示 3LCALL DELAYMOV P0,#0FFHCLR P1.3CLR P1.2CLR P1.1CLR P1.0MOV P0,#74H ;数码管显示 4LCALL DELAYMOV P0,#0FFHCLR P1.4CLR P1.3CLR P1.2CLR P1.1CLR P1.0MOV P0,#61H ;数码管显示 5;LCALL DELAYMOV P0,#0FFHCLR P1.5CLR P1.4CLR P1.3CLR P1.2CLR P1.1CLR P1.0MOV P0,#21H ; 数码管显示 6LCALL DELAYMOV P0,#0FFHCLR P1.6CLR P1.5CLR P1.4CLR P1.3CLR P1.2CLR P1.1CLR P1.0MOV P0,#7AH ; 数码管显示 7LCALL DELAYMOV P0,#0FFHCLR P1.7CLR P1.6CLR P1.5CLR P1.4CLR P1.3CLR P1.2CLR P1.1CLR P1.0MOV P0,#20H ; 数码管显示 8LCALL DELAYMOV P0,#0FFHLCALL DELAYMOV P0,#0FFHMOV P1,#0FFH;程序到此结果为左边的数码管显示0,1,2,3,4,5,6,7,8;p1.0------------p1.7指示灯依次点亮SETB P2.6 ; 左边的8消隐CLR P2.7 ;选中p2.7 数码管右边的8字使能 ,;MOV P0,#28HLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.0MOV P0,#7EHLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.1MOV P0,#0A2HLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.2MOV P0,#62HLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.3MOV P0,#74HLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.4MOV P0,#61HLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.5MOV P0,#21HLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.6MOV P0,#7AHLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHCLR P1.7MOV P0,#20HLCALL DELAYMOV P0,#0FFHMOV P1,#0FFHMOV P0,#0FFHMOV P1,#0FFH;这一段和上一段基本相同, 不同的是右边的数码管依次显示012345678,左边的不亮;;同时p1口的灯流动显示:AJMP LOOP; 注意: 程序运行到此跳转到开始标号,重复执行:DELAY: ;延时子程序;参考前面的教程:CLR P3.3 ;注意小喇叭在3.3口, 这里可以使小喇叭发出嗒,嗒声MOV R7,#255NOPNOPD1:MOV R6,#255setb p3.3D2: DJNZ R6,D2clr p3.3DJNZ R7,D1SETB P3.3RETENDLOOP: ; 标号CLR P2.6 ;选中p2.6 数码管左边的8字使能SETB P2.7 ;p2.7不使能。 右边的数码管消隐MOV P0,#28H ;把28h送p0口;数码管显示 0 ;28为1010000LCALL DELAY ; 延时程序MOV P0,#0FFH ;0ffh 送p0口,数码管清除;P0口为11111111CLR P1.0 ;点亮p1.0发光管; P1。0为电平,P0口为11111110MOV P0,#7EH ;把7eh送p0口;数码管显示 1; P1。0为低电平,P0口为11111110LCALL DELAY ; 延时程序MOV P0,#0FFHMOV P0,#0FFH ;0ffh 送p0口,数码管清除;P0口为11111111 清一次显示这条是清显示的
上传时间: 2013-10-31
上传用户:gundamwzc
开发环境是FPGA开发工具,描述的是VHDL延时程序,文章中也有程序
上传时间: 2014-01-23
上传用户:refent
嵌入式应用如图1所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETB P1.0指令使P1.0端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。 作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太大,所以我们在执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程序是如何设计呢?下面具体介绍其原理:
标签: 嵌入式应用
上传时间: 2016-03-21
上传用户:jjj0202