随着数字图像处理技术的发展,图像处理系统在日常生活、工业、军事和医疗方面等许多领域得到了广泛的应用。 本论文围绕视频图像处理器的设计以及图像增强算法的研究,开展了以下方面的研究: 1.对基于拉普拉斯算子的灰度图像增强算法、基于饱和度分量反馈的自适应亮度增强算法及其改进算法进行了仿真,并分别对增强前后的灰度图像和彩色图像进行了比较。 2.提出了一个视频图像处理器的硬件实现方案。该方案以FPGA为核心,具有较强的图像实时处理能力,具有1路视频输入端口和1路视频输出端口,以及PCI接口和2个UART串行接口。 3.完成了视频图像处理器的原理图设计、印制板图设计。在印制板图设计中,应用信号完整新分析的理论,对高速电路的布局和布线进行了优化设计,保证了硬件电路的性能。
上传时间: 2013-06-13
上传用户:lanjisu111
雷达截获接收机、反辐射导弹等电子设备的使用对军用雷达的生存构成了严重威胁。因此,雷达必须避免被敌方电子设备截获和干扰。这种形式下噪声雷达应运而生,其中一种很成熟的便是噪声调频雷达。上世纪八十年代,我们课题组成功研制了噪声调频雷达原理样机。虽然该雷达具有十分优异的LPI性能,但是限于当时的电子技术水平,该雷达采用模拟器件实现,使得雷达的体积较大、工作稳定性受外界环境影响大,在小型化、高精度的应用领域受到诸多限制。FPGA是上世纪八十年代发展起来的数字技术,具有体积小、精度高、稳定性好和速度快等特点。 本文在噪声雷达课题组研究的基础上,设计实现噪声调频雷达信号处理系统。内容安排如下:第一章介绍噪声雷达的研究背景和发展前景;第二章介绍噪声调频雷达的原理,证明混频器输出信号各态历经性;第三章介绍FPGA开发软硬件环境;第四章详细阐述基于FPGA技术的噪声调频雷达信号处理系统设计和系统中关键模块的设计实现;第五章对设计的FPGA信号处理系统进行仿真和验证。最后,第六章对全文进行总结,指出了设计中的不足和须改进的地方。
上传时间: 2013-05-21
上传用户:天涯
近年来,瓦斯事故在煤矿生产事故中所占比例越来越高,给矿工的生产生活带来了极大的灾难,必须加强对瓦斯的监测监控,避免瓦斯爆炸事故。因此对瓦斯气体进行快速、实时检测对于煤矿安全生产及环境保护有特别重要的意义。便携式甲烷检测报警仪是各国应用最早最普遍的一种甲烷浓度检测仪表,可随时检测作业场所的甲烷浓度,也可使用甲烷传感器对甲烷浓度进行连续实时地监测。大体上当前应用的便携式甲烷检测仪器,按检测原理分为光学甲烷检测仪、热导型甲烷检测仪、热催化型甲烷检测报警仪、气敏半导体式甲烷检测仪等几种。 光干涉甲烷检测仪性能稳定、使用寿命长,测量准确,是我国煤矿主要的便携式甲烷检测仪器。但现有的光干涉甲烷检测仪存在自动化程度低、测量方法繁琐、读数不直观,人为误差较大、不能存储数据等缺点。为此本文在干涉型甲烷检测仪实现的原理上提出利用线阵型电荷耦合器件(CCD)对干涉条纹进行非接触式的自动测量,获得条纹信息,通过CCD驱动、高速模数转换、数据采集等关键技术,实现了干涉条纹位移的精确测量,由单片机对量化后的测量信号进行智能处理,数字化显示甲烷含量的测量结果。 光干涉甲烷检测的关键是对干涉条纹中白基线以及黑色条纹位置的检测,本设计采用线阵CCD成像获取条纹信息判别其位置。CCD是一种性能独特的半导体光电器件,近年来在摄像、工业检测等科技领域里得到了广泛的应用。将CCD技术应用于位置测量可以实现高精度和非接触测量的要求;运用FPGA实现CCD芯片的驱动具有速度快、稳定高等优点:模数转换之后的数据没有采用专用存储芯片进行存储,而采用FPGA硬件开发平台和Verilog HDL硬件描述语言编写代码实现数据采集模块系统,同时提高数据采集精准度,既降低成本又提高了存储效率。 本文设计的新系统使用方便、精度高、数据可储存,克服了传统光干涉甲烷检测仪的缺点,技术指标和功能都得到较大改善。
上传时间: 2013-06-08
上传用户:jogger_ding
数字信号发生器是数字信号处理中不可缺少的调试设备。在某工程项目中,为了提供特殊信号,比如雷达信号,就需要设计专用的数字信号发生器,用以达到发送雷达信号的要求。在本文中提出了使用PCI接口的专用数字信号发生器方案。 该方案的目标是能够采录雷达信号,把信号发送到主机作为信号文件存储起来,然后对这个信号文件进行航迹分离,得到需要的航迹信号文件。同时,信号发生器具有发送信号的功能,可以把不同形式的信号文件发送到检测端口,用于设备调试。 在本文中系统设计主要分为硬件和软件两个方面来介绍: 硬件部分采用了FPGA逻辑设计加上外围电路来实现的。在硬件设计中,最主要的是FPGA逻辑设计,包括9路主从SPI接口信号的逻辑控制,片外SDRAM的逻辑控制,PCI9054的逻辑控制,以及这些逻辑模块间信号的同步、发送和接收。在这个过程中信号的方向是双向的,所选用的芯片都具有双向数据的功能。 在本文中软件部分包括驱动软件和应用软件。驱动软件采用PLXSDK驱动开发,通过控制PCI总线完成数据的采录和发送。应用软件中包括数据提取和数据发送,采用卡尔曼滤波器等方法。 通过实验证明该方案完全满足数据传输的要求,达到SPI传输的速度要求,能够完成航迹提取,以及数据传输。
上传时间: 2013-07-14
上传用户:脚趾头
本课题深入分析了GPS软件接收机基于FFT并行捕获算法并详细阐述了其FPGA的实现。相比于其它的捕获方案,该方案更好地满足了信号处理实时性的要求。 论文的主体部分首先简单分析了扩频通信系统的基本原理,介绍了GPS系统的组成,详细阐述了GPS信号的特点,并根据GPS信号的组成特点介绍了接收机的体系结构。其次,通过对GPS接收机信号捕获方案的深入研究,确定了捕获速度快且实现复杂度不是很高的基于FFT的并行捕获方案,并对该方案提出了几点改进的措施,根据前面的分析,提出了系统的实现方案,利用MATLAB对该系统进行仿真,仿真的结果充分的验证了方案的可行性。接着,对于捕获环节中的核心部分—FFT处理器,设计中没有采用ALTERA提供的IP核,独立设计实现了基于FPGA的FFT处理器,并通过对一组数据在MATLAB中运算得到结果和FPGA输出结果相对比,可以验证该FFT处理器的正确性。再次重点分析了GPS接收机并行捕获部分的FPGA具体实现,通过捕获的FPGA时序仿真波形,证明了该系统已经能成功地捕获到GPS信号。最后,对全文整个研究工作进行总结,并指出以后继续研究的方向。 本课题虽然是对于GPS接收机的研究,但其原理与GALILEO、北斗等导航系统的接收机相近,因此该课题的研究对我国卫星导航事业的发展起到了积极的推动作用。
上传时间: 2013-08-06
上传用户:青春123
普通GPS接收机在特殊环境下,如在高楼林立的城市中心,林木遮挡的森林公路,特别是在隧道和室内环境的情况下,由于卫星信号非常微弱,载噪比(Carrier Noise Ratio,C/No)通常都在34dB-Hz以下,很难有效捕获到卫星信号,导致无法正常定位。恶劣条件下的定位有广阔的发展和应用前景,特别是在交通事故、火灾和地震等极端环境下,快速准确定位当事者所处位置对于降低事态损失和营救受伤者是极为重要的。欧美和日本等发达国家也都制定了相应的提高恶劣条件下高灵敏度定位能力的发展政策。而高灵敏度GPS接收机定位的关键在于GPS微弱信号的处理。 本课题的主要研究内容是针对GPS微弱信号改进处理方法。针对传统GPS接收机信号捕获中的串行搜索方法提出了基于批处理的微弱信号捕获方法,来提高低信噪比情况下微弱信号的捕获能力,实现快速高灵敏度的准确捕获;针对捕获微弱信号处理大量数据导致的运算量激增,运用双块零拓展(Double Block Zero Padding,DBZP)处理方法减少运算量同时缩短捕获时间。针对传统GPS接收机延迟锁相环跟踪算法提出了基于卡尔曼滤波的新型捕获算法,减小延迟锁相环失锁造成的信号跟踪丢失概率,来提高恶劣环境下低信噪比信号的跟踪能力,实现微弱信号的连续可靠跟踪。通过提高GPS微弱信号的捕获与跟踪能力,进而使GPS接收机在恶劣环境下卫星信号微弱时能够实现较好的定位与导航。 通过拟合GPS接收机实际接收到的原始数据,构造出不同载噪比的数字信号,分别对提出的针对微弱信号的捕获与跟踪算法进行仿真比较验证,结果表明,对接收机后端信号处理部分作出的算法改进使得GPS接收机可以更好的处理微弱信号,并且具有较高的灵敏度和精度。文章同时针对提出的数据处理特征使用FPGA技术对算法主要的数据处理部分进行了初步的构架实现并进行了板级验证,结果表明,利用FPGA技术可以较好的实现算法的数据处理功能。文章最后给出了结论,通过提出的基于批处理和基于DBZP方法的捕获算法以及基于卡尔曼滤波的信号跟踪算法,可以有效地解决微弱GPS信号处理的难题,进而实现微弱信号环境下的定位与导航。
上传时间: 2013-05-31
上传用户:cccole0605
随着计算机技术和通信技术的迅速发展,数字视频在信息社会中发挥着越来越重要的作用,视频传输系统已经被广泛应用于交通管理、工业监控、广播电视、银行、商场等多个领域。同时,FPGA单片规模的不断扩大,在FPGA芯片内部实现复杂的数字信号处理系统也成为现实,因此采用FPGA实现视频压缩和传输已成为一种最佳选择。 本文将视频压缩技术和光纤传输技术相结合,设计了一种基于无损压缩算法的多路数字视频光纤传输系统,系统利用时分复用和无损压缩技术,采用串行数字视频传输的方式,可在一根光纤中同时传输8路以上视频信号。系统在总体设计时,确定了基于FPGA的设计方案,采用ADI公司的AD9280和AD9708芯片实现A/D转换和D/A转换,在FPGA里实现系统的时分复用/解复用、视频数据压缩/解压缩和线路码编解码,利用光收发一体模块实现电光转换和光电转换。视频压缩采用LZW无损压缩算法,用Verilog语言设计了压缩模块和解压缩模块,利用Xilinx公司的IP核生成工具Core Generator生成FIFO来缓存压缩/解压缩单元的输入输出数据,光纤线路码采用CIMT码,设计了编解码模块,解码过程中,利用数字锁相环来实现发射与接收的帧同步,在ISE8.2和Modelsim仿真环境下对FPGA模块进行了功能仿真和时序仿真,并在Spartan-3E开发板和视频扩展板上完成了系统的硬件调试与验证工作,实验证明,系统工作稳定,图像清晰,实时传输效果好,可用于交通、安防、工业监控等多个领域。 本文将视频压缩和线路码编解码在FPGA里实现,利用FPGA的并行处理优势,大大提高了系统的处理速度,使系统具有集成度高、灵活性强、调试方便、抗干扰能力强、易于升级等特点。
上传时间: 2013-06-27
上传用户:几何公差
互联网、移动通信、星基导航是21世纪信息社会的三大支柱产业,而GPS系统的技术水平和发展历程代表着全世界卫星导航系统的发展状况。目前,我国已经成为GPS的使用大国,卫星导航产业链也已基本形成。然而,我们对GPS核心技术的研究还不够深入,我国GPS产品的核心部分多数还是靠进口。 GPS接收机工作时,为了将本地信号和接收到的信号同步,要完成复杂的信号处理过程。其中,如何捕获卫星信号并保持对信号的跟踪是最重要的核心技术。很多研究者提出了多种解决方法,但这些方法多数都只停留在理论阶段,无法应用于GPS接收机系统进行实时处理。 本课题在分析了多种现有算法的基础上,研究设计了基于FPGA的GPS信号捕获与跟踪系统。在研究过程中,首先利用Nemerix公司的GPS芯片组设计制作了GPS接收机模块,它能正常稳定地工作,并可用作GPS基带信号处理的研究平台;该平台可实时地输出GPS数字中频信号;本课题在中频信号的基础上深入研究了GPS信号的捕获与跟踪技术。先详细分析比较了几种GPS信号捕获方法,给出了步进相关的捕获方案;接着分析了跟踪环路的特点,给出了锁频环和锁相环交替工作跟踪载波以及载波辅助伪码的跟踪方案,并最终实现了这些方案。 本课题设计的GPS信号捕获与跟踪处理系统是通过硬件和软件协同工作的方式实现的。硬件电路主要实现数据速率高、逻辑简单的相关器功能;而基于MicroBlaze软处理器的软件主要实现数据速率低、逻辑复杂的功能。本文给出了硬件电路的详细设计、仿真结果以及软件设计的详细流程。 本课题最终在FPGA上实现了GPS信号的捕获与跟踪功能,而且系统的性能良好。由此可以得出结论:本设计能够满足系统功能和性能的要求,可以直接用于实时GPS接收机系统的设计中,为自主设计GPS接收机奠定了基础。 本课题的研究得到了大连市信息产业局集成电路设计专项的资助,项目名称是“定位与通信集成功能的SOC设计”,研究成果将在2008年上半年投入试用。
上传时间: 2013-04-24
上传用户:1583060504
随着信息技术的发展,数字信号的采集与处理在科学研究、工业生产、航空航天、医疗卫生等部门得到越来越广泛的应用,这些应用中对数字信号的传输速度提出了比较高的要求。传统的基于ISA总线的信号传输效率低,严重制约着系统性能的提高。 PCI总线以其高性能、低成本、开放性、软件兼容性等众多优点成为当今最流行的计算机局部总线。但是,由于PCI总线硬件接口复杂、不易于接入、协议规范比较繁琐等缺点,常常需要专用的接口芯片作为桥接,为了解决这一系列问题,本文提出了一种基于FPGA的PCI总线接口桥接逻辑的实现方案,支持PCI突发访问方式,突发长度为8至128个双字长度,核心FPGA芯片采用ALTERA公司的CYCLONE FPGA系列的EP1C6Q240C8,容量为6000个逻辑宏单元,速度为-8,编译后系统速度可以达到80MHz,取得了良好的效果。 基于FPGA的PCI总线接口桥接逻辑的核心是PCI接口模块。在硬件方面,特别讨论了PCI接口模块、地址转换模块、数据缓冲模块、外部接口模块和SRAM DMA控制模块等五个功能模块的设计方案和硬件电路实现方法,着重分析了PCI接口模块的数据传输方式,采用模块化的方法设计了内部控制逻辑,并进行了相关的时序仿真和逻辑验证,硬件需要软件的配合才能实现其功能,因此设备驱动程序的设计是一个重要部分,论文研究了Windows XP体系结构下的WDM驱动模式的组成、开发设备驱动程序的工具以及开发系统实际硬件的设备驱动程序时的一些关键技术。 本文最后利用基于FPGA的PCI总线接口桥接逻辑中的关键技术,对PCI数据采集卡进行了整体方案的设计。该系统采用Altera公司的cyclone Ⅱ系列FPGA实现。
上传时间: 2013-07-24
上传用户:ca05991270
《信号完整性分析》经典的书籍。值得收藏。外文翻译版。
上传时间: 2013-07-10
上传用户:fsypc