虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

多神经网络

  • 自己编的遗传算法同BP神经网络结合的代码!并且在神经网络模型上进行多目标寻优

    自己编的遗传算法同BP神经网络结合的代码!并且在神经网络模型上进行多目标寻优,结果有doc文档详细说明!实现BP-GA多目标优化应用实例!

    标签: 算法 BP神经网络 代码 神经网络模型

    上传时间: 2014-01-09

    上传用户:zgu489

  • 用BP神经网络实现的第三代移动通信CDMA多用户检测算法

    用BP神经网络实现的第三代移动通信CDMA多用户检测算法

    标签: CDMA BP神经网络 移动通信 多用户检测

    上传时间: 2016-11-21

    上传用户:guanliya

  • BP算法是为了解决多层前向神经网络的权系数优化而提出来的;所以

    BP算法是为了解决多层前向神经网络的权系数优化而提出来的;所以,BP算法也通常暗示着神经网络的拓扑结构是一种无反馈的多层前向网络

    标签: BP算法 多层 神经网络 系数

    上传时间: 2013-12-20

    上传用户:stampede

  • BP算法是为了解决多层前向神经网络的权系数优化而提出来的;所以

    BP算法是为了解决多层前向神经网络的权系数优化而提出来的;所以,BP算法也通常暗示着神经网络的拓扑结构是一种无反馈的多层前向网络

    标签: BP算法 多层 神经网络 系数

    上传时间: 2014-01-23

    上传用户:zukfu

  • PNN又称为概率神经网络,它最初由数学家Specht于1990年提出,后经Master[1995]等不断发展和完善,已成功地应用于机器学习、人工智能、自动控制等众多领域.概率神经网络比多层前馈网络的数

    PNN又称为概率神经网络,它最初由数学家Specht于1990年提出,后经Master[1995]等不断发展和完善,已成功地应用于机器学习、人工智能、自动控制等众多领域.概率神经网络比多层前馈网络的数学原理简单,且易于实现

    标签: Master Specht 1990 1995

    上传时间: 2013-12-18

    上传用户:kristycreasy

  • 混沌时间序列预测(chaotic time series prediction) RBF神经网络一步预测 - Prediction_RBFMain_RBF.m RBF神经网络多步预测 - Pred

    混沌时间序列预测(chaotic time series prediction) RBF神经网络一步预测 - \Prediction_RBF\Main_RBF.m RBF神经网络多步预测 - \Prediction_RBF\Main_RBF_MultiStepPred.m Volterra级数一步预测 - \Prediction_Volterra\Main_Volterra.m Volterra级数多步预测 - \Prediction_Volterra\Main_Volterra_MultiStepPred.m

    标签: Prediction_RBFMain_RBF prediction RBF chaotic

    上传时间: 2014-08-21

    上传用户:yangbo69

  • 神经网络,数字识别,水印程序,matlab 里面有关于matlab数字识别的多份代码及资料

    神经网络,数字识别,水印程序,matlab 里面有关于matlab数字识别的多份代码及资料,

    标签: matlab 数字识别 神经网络 代码

    上传时间: 2014-01-17

    上传用户:1051290259

  • 多层神经网络MLP快速入门

    该文档为多层神经网络MLP快速入门讲解文档,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看………………

    标签: 神经网络 mlp

    上传时间: 2022-01-20

    上传用户:

  • 基于BP神经网络的无刷直流电机PID控制方法的研究.rar

    无刷直流电机(BLDCM)是随着电机控制技术、电力电子技术和微电子技术的发展而出现的一种新型电机。它是在有刷直流电机的基础上发展起来的。无刷直流电机具有交流电机的结构简单、运行可靠、维护方便等一系列特点,又具有直流电机的运行效率高、无励磁损耗以及调速性能好等诸多优点,在很多场合有广泛的应用前景,成为了国内外研究的热点。无刷直流电机传统的理论部分分析和设计方法已经比较成熟,因此对无刷直流电机控制策略的研究就显得十分重要。 PID控制以其结构简单、可靠性高、易于工程实现等优点至今仍被广泛应用。在系统模型参数变化不大的情况下,PID控制性能优良。但在工业上有许多无法建立精确数学模型的复杂控制对象和非线性控制对象,若采用传统的PID进行控制的话,那么很难获得比较理想的控制效果。 对于无刷直流电机而言,它是一个多变量、强耦合的非线性系统,固定参数的PID调节器无法得到很理想的控制性能指标。基于以上原因,本文以无刷直流电机为控制对象,通过分析无刷直流电机的数学模型,以BP神经网络为基础,设计了应用于无刷直流电机的神经网络PID控制器。 在MATLAB平台上,先利用神经网络PID控制器,给出相应的控制算法,对典型的参数时变非线性系统的控制进行了仿真研究。仿真结果表明,同传统PID控制器相比,神经网络PID控制器对模型、环境具有较好的适应能力与较强的鲁棒性,有效的改善了系统的控制结果,达到了预期的目的。随后利用SIMULNK建立了无刷直流电机控制系统的仿真模型。分别采用普通PID控制器和神经网络PID控制器对电机的不同运行状况进行了仿真分析。仿真结果验证了所建模型的正确性,并证明了神经网络控制的优越性。

    标签: PID BP神经网络 无刷直流电机

    上传时间: 2013-08-04

    上传用户:YYRR

  • 基于BP神经网络的永磁同步电机自适应控制研究.rar

    永磁同步电机(Permanent Magnet Synchronous Motor)因功率密度大、效率高、过载能力强、控制性能优良等优点,在中小容量调速系统和高精度调速场合发展迅速。但由于永磁同步电机的磁场具有独特的交叉耦合和交叉饱和现象,且其控制系统是一个强非线性、时变和多变量系统,要实现高精度调速就需对其控制策略进行深入研究。 永磁同步电机调速系统中,位置传感器的存在使得系统成本增加、结构复杂、可靠性降低,所以永磁同步电机的无位置传感器控制成为一个新的研究热点。本文拟借助于神经网络良好的逼近能力,实现永磁同步电机的无位置传感器控制。 人工神经网络(Neural Network)可以逼近任意复杂非线性映射,具有很强的自学习自适应能力,十分适合于解决复杂的非线性控制问题。其中,BP神经网络是目前广泛应用的神经网络之一,得到了较为深入的研究,其结构简单,需要离线确定的参数少、泛化能力强、逼近精度高、实时性强,采用BP神经网络实现永磁同步电机的调速控制具有重要意义。 文中提出了基于BP神经网络的永磁同步电机自适应调速控制策略,建立了一种包含辨识网络和控制网络的双神经网络结构控制系统。辨识网络在线动态辨识系统输出并对控制网络参数进行调整,控制网络与PI控制方法相结合实现永磁同步电机自适应转速控制。仿真结果表明,该系统动态响应快、实时性较强、精度较高。 文中提出了一种基于混合训练算法的BP神经网络永磁同步电机无位置传感器控制方法。采用混沌优化和梯度下降法相结合的混合算法对BP神经网络进行离线训练后,将其用于永磁同步电机的转子位置角在线估计。结果表明,该训练算法可以有效地加快神经网络收敛速度,且估计的转子位置角误差较小、精度较高。 文中建立了以TMS320F2812芯片为核心的永磁同步电机调速控制系统,并进行了相应的软硬件设计,为实现永磁同步电机的各种控制策略奠定了实验基础。DSP控制系统为神经网络训练提供样本,为研究永磁同步电机的自适应调速控制和转子位置角估计创造了条件。

    标签: BP神经网络 永磁同步电机 自适应控制

    上传时间: 2013-07-03

    上传用户:kakuki123