BP神经网络具有任意复杂的模式分类能力和优良的多维函数映射能力,解决了简单感知器不能解决的异或(Exclusive OR,XOR)和一些其他问题。从结构上讲,BP网络具有输入层、隐藏层和输出层;从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。
标签: BP神经网络
上传时间: 2019-04-01
上传用户:dmwx
神经网络在智能机器人导航系统中的应用研究1神经网络在环境感知中的应 用 对环境 的感 知 ,环境模型 妁表示 是非常重要 的。未 知 环境中的障碍物的几何形状是不确定的,常用的表示方浩是 槽格法。如果用册格法表示范围较大的工作环境,在满足 精度要求 的情况下,必定要占用大量的内存,并且采用栅 格法进行路径规划,其计算量是相当大的。Kohon~n自组织 神经瞬络为机器人对未知环境的蒜知提供了一条途径。 Kohone~冲经网络是一十自组织神经网络,其学习的结 果能体现出输入样本的分布情况,从而对输入样本实现数 据压缩 。基于 网络 的这些特 性,可采 用K0h0n曲 神经元 的 权向量来表示 自由空间,其方法是在 自由空间中随机地选 取坐标点xltl【可由传感器获得】作为网络输入,神经嘲络通 过对大量的输八样本的学习,其神经元就会体现出一定的 分布形 式 学习过程如下:开 始时网络的权值随机地赋值 , 其后接下式进行学 习: , 、 Jm(,)+叫f)f,)一珥ff)) ∈N,(f) (,) VfeN.(f1 其 中M(f1:神经元 1在t时刻对 应的权值 ;a(∽ 谓整系 数 ; (『l网络的输八矢量;Ⅳ():学习的 I域。每个神经元能最 大限度 地表示一 定 的自由空间 。神经 元权 向量的最 小生成 树可以表示出自由空问的基本框架。网络学习的邻域 (,) 可 以动 态地 定义 成矩形 、多边 形 。神经 元数量 的选取取 决 于环境 的复杂度 ,如果神 经元 的数量 太少 .它们就 不能 覆 盖整十空间,结果会导致节点穿过障碍物区域 如果节点 妁数量太大 .节点就会表示更多的区域,也就得不到距障 碍物的最大距离。在这种情况下,节点是对整个 自由空间 的学 习,而不是 学习最 小框架空 间 。节 点的数 量可 以动态 地定义,在每个学习阶段的结柬.机器人会检查所有的路 径.如检铡刊路径上有障碍物 ,就意味着没有足够的节点 来 覆盖整 十 自由窑 间,需要增加 网络节点来 重新学 习 所 138一 以为了收敛于最小框架表示 ,应该采用较少的网络 节点升 始学习,逐步增加其数量。这种方法比较适台对拥挤的'E{= 境的学习,自由空间教小,就可用线段表示;若自由空问 较大,就需要由二维结构表示 。 采用Kohonen~冲经阿络表示环境是一个新的方法。由 于网络的并行结构,可在较短的时间内进行大量的计算。并 且不需要了解障碍物的过细信息.如形状、位置等 通过 学习可用树结构表示自由空问的基本框架,起、终点问路 径 可利用树的遍 历技术报容易地被找到 在机器人对环境的感知的过程中,可采用人】:神经嘲 络技术对 多传 感器的信息进 行融台 。由于单个传感器仅能 提 供部分不 完全 的环境信息 ,因此只有秉 甩 多种传感器 才 能提高机器凡的感知能力。 2 神经 网络在局部路径规射中的应 用 局部路径 规删足称动吝避碰 规划 ,足以全局规荆为指 导 利用在线得到的局部环境信息,在尽可能短的时问内
上传时间: 2022-02-12
上传用户:qingfengchizhu
人工神经网络提供了一种普遍且实用的方法从样例中学习值为实数、离散值或向量的函数反向传播算法,使用梯度下降来调节网络参数以最佳拟合由输入-输出对组成的训练集合人工神经网络对于训练数据中的错误健壮性很好人工神经网络已被成功应用到很多领域,例如视觉场景分析,语音识别,机器人控制神经网络学习对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效的学习方法反向传摇成功例子,学习识别手写字符,学习识别口语,学习识别人脸生物学动机ANN受到生物学的启发,生物的学习系统是由相互连接的神经元组成的异常复杂的网络。ANN由一系列简单的单元相互密集连接构成的,其中每一个单元有一定数量的实值输入,并产生单一的实数值输出人脑的构成,大约有1011个神经元,平均每一个与其他104个相连神经元的活性通常被通向其他神经元的连接激活或抑制最快的神经元转换时间比计算机慢很多,然而人脑能够以惊人的速度做出复杂度惊人的决策很多人推测,生物神经系统的信息处理能力一定得益于对分布在大量神经元上的信息表示的高度并行处理
上传时间: 2022-04-08
上传用户:trh505
随着人类社会的进步,科学技术的发展日新月异,模拟人脑神经网络的人工神经网络已取得了长足的发展。经过半个多世纪的发展,人工神经网络在计算机科学,人工智能,智能控制等方面得到了广泛的应用。当代社会是一个讲究效率的社会,科技更新领域也是如此。在人工神经网络研究领域,算法的优化显得尤为重要,对提高网络整体性能举足轻重.BP神经网络模型是目前应用最为广泛的一种神经网络模型,对于解决非线性复杂问题具有重要的意义。但是BP神经网络有其自身的一些不足(收敛速度慢和容易陷入局部极小值问题),在解决某些现实问题的时候显得力不从心。针对这个问题,本文利用遗传算法的并行全局搜索的优势,能够弥补BP网络的不足,为解决大规模复杂问题提供了广阔的前景。本文将遗传算法与BP网络有机地结合起来,提出了一种新的网络结构,在稳定性、学习性和效率方面都有了很大的提高。基于以上的研究目的,本文首先设计了BP神经网络结构,在此基础上,应用遗传算法进行优化,达到了加快收敛速度和全局寻优的效果。本文借助MATLAB平台,对算法的优化内容进行了仿真实验,得出的效果也符合期望值,实现了对BP算法优化的目的。关键词:生物神经网络:人工神经网络;BP网络;遗传算法;仿真随着电子计算机的问世及发展,人们试图去了解人的大脑,进而构造具有人类思维的智能计算机。在具有人脑逻辑推理延伸能力的计算机战胜人类棋手的同时,引发了人们对模拟人脑信息处理的人工神经网络的研究。1.1研究背景人工神经网络(Artificial Noural Networks,ANN)(注:简称为神经网络),是一种数学算法模型,能够对信息进行分布式处理,它模仿了动物的神经网络,是对动物神经网络的一种具体描述。这种网络依赖系统的复杂程度,通过调节内部大量节点之间的关系,最终实现信息处理的目的。人工神经网络可以通过对输入输出数据的分析学习,掌握输入与输出之间的潜在规则,能够对新数据进行分析计算,推算出输出结果,因为人工神经网络具有自适应和自学习的特性,这种学习适应的过程被称为“训练"。
上传时间: 2022-06-16
上传用户:jiabin
作为一种便捷地收集网上信息并从中抽取出可用信息的方式,网络爬虫技术变得越来越有用。使用Python这样的简单编程语言,你可以使用少量编程技能就可以爬取复杂的网站。《用Python写网络爬虫》作为使用Python来爬取网络数据的杰出指南,讲解了从静态页面爬取数据的方法以及使用缓存来管理服务器负载的方法。此外,本书还介绍了如何使用AJAX URL和Firebug扩展来爬取数据,以及有关爬取技术的更多真相,比如使用浏览器渲染、管理cookie、通过提交表单从受验证码保护的复杂网站中抽取数据等。本书使用Scrapy创建了一个高级网络爬虫,并对一些真实的网站进行了爬取。
上传时间: 2022-06-16
上传用户:xsr1983
神经网络是机器学习的重要分支,是智能计算的一个主流研究方向,长期受到众多科学家的关注和研究,它植根于很多学科,结合了数学、统计学、物理学、计算机科学和工程学.已经发现,它能够解决一些传统意义上很难解决的问题,也为一些问题的解决提供了全新的想法.在传统的研究成果中,有很多表达数据的统计模型,但大都是比较简单或浅层的模型,在复杂数据的学习上通常不能获得好的学习效果.深度神经网络采用的则是一种深度、复杂的结构,具有更加强大的学习能力,目前深度神经网络已经在图像识别、语音识别等应用上取得了显著的成功.这使得这项技术受到了学术界和工业界的广泛重视,正在为机器学习领域带来一个全新的研究浪潮.
标签: 深度神经网络
上传时间: 2022-06-19
上传用户:shjgzh
摘要:介绍在Linux操作系统环境下Socket网络编程的原理、流程和最终实现。编程采用客户端/服务器模式。提出解决多个客户端连接服务器时无法处理I/0多路复用问题的方法。提出通过最小化报文传输来减少传输时廷,为Bandwidth Delay Product调节TCP窗口,实现充分利用带宽提高Linux的Socket性能。在实际网络传输环境复杂多变的情况下,达到优化网络传输性能的目的。关键词:linux;性能优化;Socket;select()1引言随着Internet的日益发展和普及,网络在嵌入式系统中应用非常广泛,越来越多的嵌入式设备采用Linux操作系统。Linux是一个源代码公开的免费操作系统,具有强移植性",所以对基于Linux的Socket网络编程的研究越来越重要。2Socket简介在Linux中的网络编程通过Socket接口进行,是一种特殊的I/O,也是一种特殊的文件描述符。Socket是使用标准Linux文件符(file descriptor)和其他程序通信的方式。这里Socket 编程采用客户/服务器模式如图1所示。
上传时间: 2022-06-23
上传用户:
精密复杂结构的几种现代设计方法
上传时间: 2013-07-21
上传用户:eeworm
最新网络通信协议手册
标签: 网络通信协议
上传时间: 2013-06-12
上传用户:eeworm
数字通信网络
上传时间: 2013-08-01
上传用户:eeworm