虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

声音信号

  • 通过51单片机产生不同频率的信号

    通过51单片机产生不同频率的信号,在喇叭上产生不同频率的声音信号,实现不同音乐播放

    标签: 51单片机 频率 信号

    上传时间: 2016-10-03

    上传用户:许小华

  • 声音是通过空气传播的一种连续的波

    声音是通过空气传播的一种连续的波,叫声波。声音的强弱体现在声波压力的大小上,音调的高低体现在声音的频率上。声音用电表示时,声音信号在时间和幅度上都是连续的模拟信号。

    标签: 连续的

    上传时间: 2014-01-05

    上传用户:zsjzc

  • 随着DSP的普遍应用和数字信号处理技术的发展

    随着DSP的普遍应用和数字信号处理技术的发展,对声音信号进行实时处理成为可能,DSP的速度越来越快以及各种快速算法的应用,在上面可以进行各种复杂的数字音效实时处理,如均衡,混响。可应用于各种数字音频播放器的音频后处理,为五彩缤纷的音乐添加更多的色彩。

    标签: DSP 数字信号 处理技术 发展

    上传时间: 2013-12-18

    上传用户:源弋弋

  • 基于ARM-LINUX的嵌入式媒体播放器的研究与实现

    随着科学技术的发展,人们对生活质量的要求越来越高,在视听享受方面,家庭影院越来越普遍,便携式电子设备也日趋成熟。目前,人们对嵌入式媒体播放器的研究越来越广泛了,国内外已经出现了像MP3、MP4和智能手机等众多样式的便携式嵌入式媒体播放器。但由于种种环境及条件的限制,这些便携式的媒体播放器都只能播放单一的或几种固定的媒体格式,可扩展性都比较差;而现在随着应用的不断增多,越来越多的更先进的压缩算法被提出,导致了媒体格式的多样化,在这种情况下,必然要求嵌入式媒体播放器要适应多种格式。为此,通过对各种PC机上的播放器设计架构的研究与借鉴,在本文中主要在软件方面为嵌入式媒体播放器设计了一种可扩展性架构,并设计了播放器界面,实现了一些播放器的功能。 另外,在本文还介绍了一种基于嵌入式技术的多媒体播放器的系统设计方案。该系统主要是通过在嵌入式芯片上加载操作系统,同时扩充必要的接口,在操作系统的支持下,开发多媒体播放器。 在本文的整个系统设计过程中,采用了Intel公司的PXA270处理器芯片,外扩展了USB接口,定制并加载了Linux操作系统,在操作系统的支持下,对各个外扩的接口进行了驱动程序的编写,同时应用QT/Embedded开发了多媒体播放器的图形界面并实现了相应的功能,最后,图像既可显示在LCD显示屏上也可通过VGA接口显示在电脑显示屏上,声音信号则是通过PXA270处理器的IIS总线传给CODEC芯片,然后将其转换为模拟信号,进而通过音箱或者耳机等设备放出。

    标签: ARM-LINUX 嵌入式 媒体播放器

    上传时间: 2013-06-19

    上传用户:stvnash

  • 单片机音乐中音调和节拍的确定方法

    单片机音乐中音调和节拍的确定方法:调号-音乐上指用以确定乐曲主音高度的符号。很明显一个八度就有12个半音。A、B、C、D、E、F、G。经过声学家的研究,全世界都用这些字母来表示固定的音高。比如,A这个音,标准的音高为每秒钟振动440周。 升C调:1=#C,也就是降D调:1=BD;277(频率)升D调:1=#D,也就是降E调:1=BE;311升F调:1=#F,也就是降G调:1=BG;369升G调:1=#G,也就是降A调:1=BA;415升A调:1=#A,也就是降B调:1=BB。466,C 262   #C277   D 294   #D(bE)311  E 330   F 349   #F369   G 392  #G415A 440.    #A466    B 494 所谓1=A,就是说,这首歌曲的“导”要唱得同A一样高,人们也把这首歌曲叫做A调歌曲,或叫“唱A调”。1=C,就是说,这首歌曲的“导”要唱得同C一样高,或者说“这歌曲唱C调”。同样是“导”,不同的调唱起来的高低是不一样的。各调的对应的标准频率为: 单片机演奏音乐时音调和节拍的确定方法 经常看到一些刚学单片机的朋友对单片机演奏音乐比较有兴趣,本人也曾是这样。在此,本人将就这方面的知识做一些简介,但愿能对单片机演奏音乐比较有兴趣而又不知其解的朋友能有所启迪。 一般说来,单片机演奏音乐基本都是单音频率,它不包含相应幅度的谐波频率,也就是说不能象电子琴那样能奏出多种音色的声音。因此单片机奏乐只需弄清楚两个概念即可,也就是“音调”和“节拍”。音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。 在音乐中所谓“音调”,其实就是我们常说的“音高”。在音乐中常把中央C上方的A音定为标准音高,其频率f=440Hz。当两个声音信号的频率相差一倍时,也即f2=2f1时,则称f2比f1高一个倍频程, 在音乐中1(do)与 ,2(来)与 ……正好相差一个倍频程,在音乐学中称它相差一个八度音。在一个八度音内,有12个半音。以1—i八音区为例, 12个半音是:1—#1、#1—2、2—#2、#2—3、3—4、4—#4,#4—5、5一#5、#5—6、6—#6、#6—7、7—i。这12个音阶的分度基本上是以对数关系来划分的。如果我们只要知道了这十二个音符的音高,也就是其基本音调的频率,我们就可根据倍频程的关系得到其他音符基本音调的频率。 知道了一个音符的频率后,怎样让单片机发出相应频率的声音呢?一般说来,常采用的方法就是通过单片机的定时器定时中断,将单片机上对应蜂鸣器的I/O口来回取反,或者说来回清零,置位,从而让蜂鸣器发出声音,为了让单片机发出不同频率的声音,我们只需将定时器予置不同的定时值就可实现。那么怎样确定一个频率所对应的定时器的定时值呢?以标准音高A为例:   A的频率f = 440 Hz,其对应的周期为:T = 1/ f = 1/440 =2272μs 由上图可知,单片机上对应蜂鸣器的I/O口来回取反的时间应为:t = T/2 = 2272/2 = 1136μs这个时间t也就是单片机上定时器应有的中断触发时间。一般情况下,单片机奏乐时,其定时器为工作方式1,它以振荡器的十二分频信号为计数脉冲。设振荡器频率为f0,则定时器的予置初值由下式来确定:    t = 12 *(TALL – THL)/ f0 式中TALL = 216 = 65536,THL为定时器待确定的计数初值。因此定时器的高低计数器的初值为:     TH = THL / 256 = ( TALL – t* f0/12) / 256    TL = THL % 256 = ( TALL – t* f0/12) %256  将t=1136μs代入上面两式(注意:计算时应将时间和频率的单位换算一致),即可求出标准音高A在单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值为 :    TH440Hz = (65536 – 1136 * 12/12) /256 = FBH    TL440Hz = (65536 – 1136 * 12/12)%256 = 90H根据上面的求解方法,我们就可求出其他音调相应的计数器的予置初值。 音符的节拍我们可以举例来说明。在一张乐谱中,我们经常会看到这样的表达式,如1=C  、1=G …… 等等,这里1=C,1=G表示乐谱的曲调,和我们前面所谈的音调有很大的关联, 、 就是用来表示节拍的。以 为例加以说明,它表示乐谱中以四分音符为节拍,每一小结有三拍。比如:      其中1 、2 为一拍,3、4、5为一拍,6为一拍共三拍。1 、2的时长为四分音符的一半,即为八分音符长,3、4的时长为八分音符的一半,即为十六分音符长,5的时长为四分音符的一半,即为八分音符长,6的时长为四分音符长。那么一拍到底该唱多长呢?一般说来,如果乐曲没有特殊说明,一拍的时长大约为400—500ms 。我们以一拍的时长为400ms为例,则当以四分音符为节拍时,四分音符的时长就为400ms,八分音符的时长就为200ms,十六分音符的时长就为100ms。可见,在单片机上控制一个音符唱多长可采用循环延时的方法来实现。首先,我们确定一个基本时长的延时程序,比如说以十六分音符的时长为基本延时时间,那么,对于一个音符,如果它为十六分音符,则只需调用一次延时程序,如果它为八分音符,则只需调用二次延时程序,如果它为四分音符,则只需调用四次延时程序,依次类推。通过上面关于一个音符音调和节拍的确定方法,我们就可以在单片机上实现演奏音乐了。具体的实现方法为:将乐谱中的每个音符的音调及节拍变换成相应的音调参数和节拍参数,将他们做成数据表格,存放在存储器中,通过程序取出一个音符的相关参数,播放该音符,该音符唱完后,接着取出下一个音符的相关参数……,如此直到播放完毕最后一个音符,根据需要也可循环不停地播放整个乐曲。另外,对于乐曲中的休止符,一般将其音调参数设为FFH,FFH,其节拍参数与其他音符的节拍参数确定方法一致,乐曲结束用节拍参数为00H来表示。下面给出部分音符(三个八度音)的频率以及以单片机晶振频率f0=12Mhz,定时器在工作方式1下的定时器高低计数器的予置初值 : C调音符  频率Hz 262 277 293 311 329 349 370 392 415 440 466 494TH/TL F88B F8F2 F95B F9B7 FA14 FA66 FAB9 FB03 FB4A FB8F FBCF FC0BC调音符 1 1# 2 2# 3 4 4# 5 5# 6 6# 7频率Hz 523 553 586 621 658 697 739 783 830 879 931 987TH/TL FC43 FC78 FCAB FCDB FD08 FD33 FD5B FD81 FDA5 FDC7 FDE7 FE05C调音符  频率Hz 1045 1106 1171 1241 1316 1393 1476 1563 1658 1755 1860 1971TH/TL FB21 FE3C FE55 FE6D FE84 FE99 FEAD FEC0 FE02 FEE3 FEF3 FF02

    标签: 单片机 音调

    上传时间: 2013-10-20

    上传用户:哈哈haha

  • 基于DSP二维声源定向系统设计

    系统基于声波到达时间差技术,采用相位匹配算法,对两个传声器采集的声音信号进行分析。通过算法仿真验证了算法的可行性和准确性,并将算法在DSP上实现。

    标签: DSP 二维 声源 定向

    上传时间: 2013-12-11

    上传用户:yanqie

  • 基于盲源分离的scilab程序

    基于盲源分离的scilab程序,可编译成matlab,使用时声音信号以及路径自行修改

    标签: scilab 盲源分离 程序

    上传时间: 2013-12-21

    上传用户:asdfasdfd

  • 盲分离算法

    盲分离算法,处理声音信号的分离,利用算法分离出语音信号,供语音识别使用

    标签: 盲分离 算法

    上传时间: 2015-10-14

    上传用户:czl10052678

  • 该源码是在matlab环境下

    该源码是在matlab环境下,设计的gui界面,可以对声音信号滤波

    标签: matlab 源码 环境

    上传时间: 2014-08-26

    上传用户:cooran

  • 电子选择器

    电子选择器,是利用TND-MD教学系统实现的,用来作为特定场合投票机器统计使用。所用到的芯片主要有8253定时计数器、8255A并行接口电路芯片等。使用时,用户用键盘输入A,B,C,D这四个字母中的一个来作为已经选择的项目,程序将在屏幕上对应显示已经选择的“A,B,C或者D”,并且通过控制扬声器,发出对应的频率声音信号,同时相对应的LED灯也对应发光,以便于位于远处的计票员进行远程计票。

    标签: 电子 选择器

    上传时间: 2014-10-14

    上传用户:cc1015285075