个人构思的基于AVR单片机的恒压恒流电源源,献丑了。
上传时间: 2013-11-22
上传用户:toyoad
两节锂电充电IC-ASC8512 ASC8512 为开关型两节锂聚合物电池充电管理芯片,非常适合于便携式设备的充电管理应用。ASC8512 集内置功率MOSFET、高精度电压和电流调节器、预充、充电状态指示和充电截止等功能于一体,采用TSSOP-14、SSOP-14两种封装形式。ASC8512对电池充电分为三个阶段:预充(Pre-charge)、恒流(CC/Constant Current)、恒压(CV/Constant Voltage)过程,恒流充电电流通过外部电阻决定,最大充电电流为2A.ASC8512 集成电流限制、短路保护,确保充电芯片安全工作。ASC8512 集成NTC 热敏电阻接口,可以采集、处理电池的温度信息,保证充电电池的安全工作温度。 两节锂电池充电IC ASC8512特点: 1.充2节锂离子和锂聚合物电池 2.开关频率达400K 3.充电电流最大可做2A 4.输入电压9V到18V 5.电池状态检测 6.恒压充电电压值可通过外接电阻微调 7.千分之五的充电电压控制精度 5.防反向保护电路可防止电池电流倒灌 6.NTC 热敏接口监测电池温度 7.LED充电状态指示 8.工作环境温度范围:-20℃~70℃ 9.TSSOP-14 应用领域:应用 ●手持设备,包括医疗手持设备 ●Portable-DVD,PDA,移动蜂窝电话及智能手机 ●上网本、平板电脑、MID ●自充电电池组
上传时间: 2013-11-06
上传用户:chfanjiang
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变 频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然 还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图所示,通用变频器的整流电路是由三相桥 式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻 网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最 大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电 动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出 的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。通用变频器直流滤波电 路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随 的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司 生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正 电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电 动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开 关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生 意外情况时,对换流器件进行保护 。
上传时间: 2013-10-18
上传用户:子虚乌有
本设计采用串联型直流稳压源的基本思路进行设计,得到0~20V 的稳定直流电压输出,电 压调整率、负载调整率,以及输出电压纹波等参数都达到较高水平,并具有限流和显示电压值、 电流值的功能,且操作方便。
标签: 直流稳压源
上传时间: 2014-12-24
上传用户:fdmpy
重点研究了场效应管驱动电路、脉冲超声波高压激发电路及接收保护电路,并简要介绍了其余电路的实现。对研制的电路进行了性能分析,所用电子元器件均无过热现象,并获得较为理想的电脉冲信号。设计的电路板已成功用于磁致伸缩式超声传感器测量材料弹性模量。
上传时间: 2013-10-15
上传用户:fhjdliu
1.1 特征1.2 稳定度1.3 反电动势1.4 电容C的充放电电流与电感L的充放电电压1.5 无变压器的最简单开关稳压电源1.5.1 降压型开关稳压电源1.5.2 升压型开关稳压电源1.5.3 极性反转型开关稳压电源1.6 iE激式电路与回扫式电路1.7 输入电压与输出功率决定的电路方式1.7.1 输入电压低的场合1.7.2 输入电压高的场合1.7.3 小功率的场合
标签: 开关稳压电源
上传时间: 2013-11-19
上传用户:laozhanshi111
摘要: 多功能电子万年历的设计是以AT089C54单片机为核心,结合DS1 302时钟芯片和DS1 8820温度传感器构成单片机控制电路,实现时间、星期、公历和农历的日期、温度、二十四节气、生肖、公历节日、闹铃等功能,全部信息可通过1 2864点阵式液晶直观显示。整机电路使用+5V稳压电源,有掉电保护功能,可长时间稳定工作。
上传时间: 2013-10-21
上传用户:czl10052678
本书全面、系统地介绍了MCS-51系列单片机应用系统的各种实用接口技术及其配置。 内容包括:MCS-51系列单片机组成原理:应用系统扩展、开发与调试;键盘输入接口的设计及调试;打印机和显示器接口及设计实例;模拟输入通道接口技术;A/D、D/A、接口技术及在控制系统中的应用设计;V/F转换器接口技术、串行通讯接口技术以及其它与应用系统设计有关的实用技术等。 本书是为满足广大科技工作者从事单片机应用系统软件、硬件设计的需要而编写的,具有内容新颖、实用、全面的特色。所有的接口设计都包括详细的设计步骤、硬件线路图及故障分析,并附有测试程序清单。书中大部分接口软、硬件设计实例都是作者多年来从事单片机应用和开发工作的经验总结,实用性和工程性较强,尤其是对应用系统中必备的键盘、显示器、打印机、A/D、D/A通讯接口设计、模拟信号处理及开发系统应用举例甚多,目的是让将要开始和正在从事单片机应用开发的科研人员根据自己的实际需要来选择应用,一书在手即可基本完成单片机应用系统的开发工作。 本书主要面向从事单片机应用开发工作的广大工程技术人员,也可作为大专院校有关专业的教材或教学参考书。 第一章MCS-51系列单片机组成原理 1.1概述 1.1.1单片机主流产品系列 1.1.2单片机芯片技术的发展概况 1.1.3单片机的应用领域 1.2MCS-51单片机硬件结构 1.2.1MCS-51单片机硬件结构的特点 1.2.2MCS-51单片机的引脚描述及片外总线结构 1.2.3MCS-51片内总体结构 1.2.4MCS-51单片机中央处理器及其振荡器、时钟电路和CPU时序 1.2.5MCS-51单片机的复位状态及几种复位电路设计 1.2.6存储器、特殊功能寄存器及位地址空间 1.2.7输入/输出(I/O)口 1.3MCS-51单片机指令系统分析 1.3.1指令系统的寻址方式 1.3.2指令系统的使用要点 1.3.3指令系统分类总结 1.4串行接口与定时/计数器 1.4.1串行接口简介 1.4.2定时器/计数器的结构 1.4.3定时器/计数器的四种工作模式 1.4.4定时器/计数器对输入信号的要求 1.4.5定时器/计数器的编程和应用 1.5中断系统 1.5.1中断请求源 1.5.2中断控制 1.5.3中断的响应过程 1.5.4外部中断的响应时间 1.5.5外部中断方式的选择 第二章MCS-51单片机系统扩展 2.1概述 2.2程序存贮器的扩展 2.2.1外部程序存贮器的扩展原理及时序 2.2.2地址锁存器 2.2.3EPROM扩展电路 2.2.4EEPROM扩展电路 2.3外部数据存贮器的扩展 2.3.1外部数据存贮器的扩展方法及时序 2.3.2静态RAM扩展 2.3.3动态RAM扩展 2.4外部I/O口的扩展 2.4.1I/O口扩展概述 2.4.2I/O口地址译码技术 2.4.38255A可编程并行I/O扩展接口 2.4.48155/8156可编程并行I/O扩展接口 2.4.58243并行I/O扩展接口 2.4.6用TTL芯片扩展I/O接口 2.4.7用串行口扩展I/O接口 2.4.8中断系统扩展 第三章MCS-51单片机应用系统的开发 3.1单片机应用系统的设计 3.1.1设计前的准备工作 3.1.2应用系统的硬件设计 3.1.3应用系统的软件设计 3.1.4应用系统的抗干扰设计 3.2单片机应用系统的开发 3.2.1仿真系统的功能 3.2.2开发手段的选择 3.2.3应用系统的开发过程 3.3SICE—IV型单片机仿真器 3.3.1SICE-IV仿真器系统结构 3.3.2SICE-IV的仿真特性和软件功能 3.3.3SICE-IV与主机和终端的连接使用方法 3.4KHK-ICE-51单片机仿真开发系统 3.4.1KHK—ICE-51仿真器系统结构 3.4.2仿真器系统功能特点 3.4.3KHK-ICE-51仿真系统的安装及其使用 3.5单片机应用系统的调试 3.5.1应用系统联机前的静态调试 3.5.2外部数据存储器RAM的测试 3.5.3程序存储器的调试 3.5.4输出功能模块调试 3.5.5可编程I/O接口芯片的调试 3.5.6外部中断和定时器中断的调试 3.6用户程序的编辑、汇编、调试、固化及运行 3.6.1源程序的编辑 3.6.2源程序的汇编 3.6.3用户程序的调试 3.6.4用户程序的固化 3.6.5用户程序的运行 第四章键盘及其接口技术 4.1键盘输入应解决的问题 4.1.1键盘输入的特点 4.1.2按键的确认 4.1.3消除按键抖动的措施 4.2独立式按键接口设计 4.3矩阵式键盘接口设计 4.3.1矩阵键盘工作原理 4.3.2按键的识别方法 4.3.3键盘的编码 4.3.4键盘工作方式 4.3.5矩阵键盘接口实例及编程要点 4.3.6双功能及多功能键设计 4.3.7键盘处理中的特殊问题一重键和连击 4.48279键盘、显示器接口芯片及应用 4.4.18279的组成和基本工作原理 4.4.28279管脚、引线及功能说明 4.4.38279编程 4.4.48279键盘接口实例 4.5功能开关及拨码盘接口设计 第五章显示器接口设计 5.1LED显示器 5.1.1LED段显示器结构与原理 5.1.2LED显示器及显示方式 5.1.3LED显示器接口实例 5.1.4LED显示器驱动技术 5.2单片机应用系统中典型键盘、显示接口技术 5.2.1用8255和串行口扩展的键盘、显示器电路 5.2.2由锁存器组成的键盘、显示器接口电路 5.2.3由8155构成的键盘、显示器接口电路 5.2.4用8279组成的显示器实例 5.3液晶显示LCD 5.3.1LCD的基本结构及工作原理 5.3.2LCD的驱动方式 5.3.34位LCD静态驱动芯片ICM7211系列简介 5.3.4点阵式液晶显示控制器HD61830介绍 5.3.5点阵式液晶显示模块介绍 5.4荧光管显示 5.5LED大屏幕显示器 第六章打印机接口设计 6.1打印机简介 6.1.1打印机的基本知识 6.1.2打印机的电路构成 6.1.3打印机的接口信号 6.1.4打印机的打印命令 6.2TPμP-40A微打与单片机接口设计 6.2.1TPμP系列微型打印机简介 6.2.2TPμP-40A打印功能及接口信号 6.2.3TPμP-40A工作方式及打印命令 6.2.48031与TPμP-40A的接口 6.2.5打印编程实例 6.3XLF微型打印机与单片机接口设计 6.3.1XLF微打简介 6.3.2XLF微打接口信号及与8031接口设计 6.3.3XLF微打控制命令 6.3.4打印机编程 6.4标准宽行打印机与8031接口设计 6.4.1TH3070接口引脚信号及时序 6.4.2与8031的简单接口 6.4.3通过打印机适配器完成8031与打印机的接口 6.4.4对打印机的编程 第七章模拟输入通道接口技术 7.1传感器 7.1.1传感器的分类 7.1.2温度传感器 7.1.3光电传感器 7.1.4湿度传感器 7.1.5其他传感器 7.2模拟信号放大技术 7.2.1基本放大器电路 7.2.2集成运算放大器 7.2.3常用运算放大器及应用举例 7.2.4测量放大器 7.2.5程控增益放大器 7.2.6隔离放大器 7.3多通道模拟信号输入技术 7.3.1多路开关 7.3.2常用多路开关 7.3.3模拟多路开关 7.3.4常用模拟多路开关 7.3.5多路模拟开关应用举例 7.3.6多路开关的选用 7.4采样/保持电路设计 7.4.1采样/保持原理 7.4.2集成采样/保持器 7.4.3常用集成采样/保持器 7.4.4采样保持器的应用举例 7.5有源滤波器的设计 7.5.1滤波器分类 7.5.2有源滤波器的设计 7.5.3常用有源滤波器设计举例 7.5.4集成有源滤波器 第八章D/A转换器与MCS-51单片机的接口设计与实践 8.1D/A转换器的基本原理及主要技术指标 8.1.1D/A转换器的基本原理与分类 8.1.2D/A转换器的主要技术指标 8.2D/A转换器件选择指南 8.2.1集成D/A转换芯片介绍 8.2.2D/A转换器的选择要点及选择指南表 8.2.3D/A转换器接口设计的几点实用技术 8.38位D/A转换器DAC080/0831/0832与MCS-51单片机的接口设计 8.3.1DAC0830/0831/0832的应用特性与引脚功能 8.3.2DAC0830/0831/0832与8031单片机的接口设计 8.3.3DAC0830/0831/0832的调试说明 8.3.4DAC0830/0831/0832应用举例 8.48位D/A转换器AD558与MCS-51单片机的接口设计 8.4.1AD558的应用特性与引脚功能 8.4.2AD558与8031单片机的接口及调试说明 8.4.38位D/A转换器DAC0800系列与8031单片机的接口 8.510位D/A转换器AD7522与MCS-51的硬件接口设计 8.5.1AD7522的应用特性及引脚功能 8.5.2AD7522与8031单片机的接口设计 8.610位D/A转换器AD7520/7530/7533与MCS一51单片机的接口设计 8.6.1AD7520/7530/7533的应用特性与引脚功能 8.6.2AD7520系列与8031单片机的接口 8.6.3DAC1020/DAC1220/AD7521系列D/A转换器接口设计 8.712位D/A转换器DAC1208/1209/1210与MCS-51单片机的接口设计 8.7.1DAC1208/1209/1210的内部结构与引脚功能 8.7.2DAC1208/1209/1210与8031单片机的接口设计 8.7.312位D/A转换器DAC1230/1231/1232的应用设计说明 8.7.412位D/A转换器AD7542与8031单片机的接口设计 8.812位串行DAC-AD7543与MCS-51单片机的接口设计 8.8.1AD7543的应用特性与引脚功能 8.8.2AD7543与8031单片机的接口设计 8.914位D/A转换器AD75335与MCS-51单片机的接口设计 8.9.1AD8635的内部结构与引脚功能 8.9.2AD7535与8031单片机的接口设计 8.1016位D/A转换器AD1147/1148与MCS-51单片机的接口设计 8.10.1AD1147/AD1148的内部结构及引脚功能 8.10.2AD1147/AD1148与8031单片机的接口设计 8.10.3AD1147/AD1148接口电路的应用调试说明 8.10.416位D/A转换器AD1145与8031单片机的接口设计 第九章A/D转换器与MCS-51单片机的接口设计与实践 9.1A/D转换器的基本原理及主要技术指标 9.1.1A/D转换器的基本原理与分类 9.1.2A/D转换器的主要技术指标 9.2面对课题如何选择A/D转换器件 9.2.1常用A/D转换器简介 9.2.2A/D转换器的选择要点及应用设计的几点实用技术 9.38位D/A转换器ADC0801/0802/0803/0804/0805与MCS-51单片机的接口设计 9.3.1ADC0801~ADC0805芯片的引脚功能及应用特性 9.3.2ADC0801~ADC0805与8031单片机的接口设计 9.48路8位A/D转换器ADC0808/0809与MCS一51单片机的接口设计 9.4.1ADC0808/0809的内部结构及引脚功能 9.4.2ADC0808/0809与8031单片机的接口设计 9.4.3接口电路设计中的几点注意事项 9.4.416路8位A/D转换器ADC0816/0817与MCS-51单片机的接口设计 9.510位A/D转换器AD571与MCS-51单片机的接口设计 9.5.1AD571芯片的引脚功能及应用特性 9.5.2AD571与8031单片机的接口 9.5.38位A/D转换器AD570与8031单片机的硬件接口 9.612位A/D转换器ADC1210/1211与MCS-51单片机的接口设计 9.6.1ADC1210/1211的引脚功能与应用特性 9.6.2ADC1210/1211与8031单片机的硬件接口 9.6.3硬件接口电路的设计要点及几点说明 9.712位A/D转换器AD574A/1374/1674A与MCS-51单片机的接口设计 9.7.1AD574A的内部结构与引脚功能 9.7.2AD574A的应用特性及校准 9.7.3AD574A与8031单片机的硬件接口设计 9.7.4AD574A的应用调试说明 9.7.5AD674A/AD1674与8031单片机的接口设计 9.8高速12位A/D转换器AD578/AD678/AD1678与MCS—51单片机的接口设计 9.8.1AD578的应用特性与引脚功能 9.8.2AD578高速A/D转换器与8031单片机的接口设计 9.8.3AD578高速A/D转换器的应用调试说明 9.8.4AD678/AD1678采样A/D转换器与8031单片机的接口设计 9.914位A/D转换器AD679/1679与MCS-51单片机的接口设计 9.9.1AD679/AD1679的应用特性及引脚功能 9.9.2AD679/1679与8031单片机的接口设计 9.9.3AD679/1679的调试说明 9.1016位ADC-ADC1143与MCS-51单片机的接口设计 9.10.1ADC1143的应用特性及引脚功能 9.10.2ADC1143与8031单片机的接口设计 9.113位半积分A/D转换器5G14433与MCS-51单片机的接口设计 9.11.15G14433的内部结构及引脚功能 9.11.25G14433的外部电路连接与元件参数选择 9.11.35G14433与8031单片机的接口设计 9.11.45G14433的应用举例 9.124位半积分A/D转换器ICL7135与MCS—51单片机的接口设计 9.12.1ICL7135的内部结构及芯片引脚功能 9.12.2ICL7135的外部电路连接与元件参数选择 9.12.3ICL7135与8031单片机的硬件接口设计 9.124ICL7135的应用举例 9.1312位双积分A/D转换器ICL7109与MCS—51单片机的接口设计 9.13.1ICL7109的内部结构与芯片引脚功能 9.13.2ICL7109的外部电路连接与元件参数选择 9.13.3ICL7109与8031单片机的硬件接口设计 9.1416位积分型ADC一ICL7104与MCS-51单片机的接口设计 9.14.1ICL7104的主要应用特性及引脚功能 9.14.2ICL7104与8031单片机的接口设计 9.14.3其它积分型A/D转换器简介 第十章V/F转换器接口技术 10.1V/F转换的特点及应用环境 10.2V/F转换原理及用V/F转换器实现A/D转换的方法 10.2.1V/F转换原理 10.2.2用V/F转换器实现A/D转换的方法 10.3常用V/F转换器简介 10.3.1VFC32 10.3.2LMX31系列V/F转换器 10.3.3AD650 10.3.4AD651 10.4V/F转换应用系统中的通道结构 10.5LM331应用实例 10.5.1线路原理 10.5.2软件设计 10.6AD650应用实例 10.6.1AD650外围电路设计 10.6.2定时/计数器(8253—5简介) 10.6.3线路原理 10.6.4软件设计 第十一章串行通讯接口技术 11.1串行通讯基础 11.1.1异步通讯和同步通讯 11.1.2波特率和接收/发送时钟 11.1.3单工、半双工、全双工通讯方式 11.14信号的调制与解调 11.1.5通讯数据的差错检测和校正 11.1.6串行通讯接口电路UART、USRT和USART 11.2串行通讯总线标准及其接口 11.2.1串行通讯接口 11.2.2RS-232C接口 11.2.3RS-449、RS-422、RS-423及RS485 11.2.420mA电流环路串行接口 11.3MCS-51单片机串行接口 11.3.1串行口的结构 11.3.2串行接口的工作方式 11.3.3串行通讯中波特率设置 11.4MCS-51单片机串行接口通讯技术 11.4.1单片机双机通讯技术 11.4.2单片机多机通讯技术 11.5IBMPC系列机与单片机的通讯技术 11.5.1异步通讯适配器 11.5.2IBM-PC机与8031双机通讯技术 11.5.3IBM—PC机与8031多机通讯技术 11.6MCS-51单片机串行接口的扩展 11.6.1Intel8251A可编程通讯接口 11.6.2扩展多路串行口的硬件设计 11.6.3通讯软件设计 第十二章应用系统设计中的实用技术 12.1MCS-51单片机低功耗系统设计 12.1.1CHMOS型单片机80C31/80C51/87C51的组成与使用要点 12.1.2CHMOS型单片机的空闲、掉电工作方式 12.1.3CHMOS型单片机的I/O接口及应用系统实例 12.1.4HMOS型单片机的节电运行方式 12.2逻辑电平接口技术 12.2.1集电极开路门输出接口 12.2.2TTL、HTL、ECL、CMOS电平转换接口 12.3电压/电流转换 12.3.1电压/0~10mA转换 12.3.2电压1~5V/4~20mA转换 12.3.30~10mA/0~5V转换 12.344~20mA/0~5V转换 12.3.5集成V/I转换电路 12.4开关量输出接口技术 12.4.1输出接口隔离技术 12.4.2低压开关量信号输出技术 12.4.3继电器输出接口技术 12.4.4可控硅(晶闸管)输出接口技术 12.4.5固态继电器输出接口 12.4.6集成功率电子开关输出接口 12.5集成稳压电路 12.5.1电源隔离技术 12.5.2三端集成稳压器 12.5.3高精度电压基准 12.6量程自动转换技术 12.6.1自动转换量程的硬件电路 12.6.2自动转换量程的软件设计 附录AMCS-51单片机指令速查表 附录B常用EPROM固化电压参考表 参考文献
上传时间: 2013-10-15
上传用户:himbly
简介:本产品是将三相晶闸管主电路和移相触发调控电路封装在一起的多功能功率集成模块。它是一个完整电力移相开环控制系统,可实现对三相电力进行整流调压。产品可广泛用于直流电机调速、工业自动化、电加热控制、机电一体化、各类电源、化工、纺织通讯等领域;可实现手动、自动控制接口,主电路交流输入无相序要求,线性控制电路,精度高,稳定性好。
上传时间: 2013-11-12
上传用户:MATAIYES
ADC 单片机的应用随着数字化时代的来临,使得现代家庭的生活愈来愈便利。以前的洗衣机,有好几个旋钮,使用者只能选择几项功能,转来转去,操作非常麻烦;自从加上了单片机之后,我们可以发现,洗衣机的功能变强了,但是操作变简单了,只要按几下按钮,就等着洗完衣服。除了洗衣机之外,家里的冰箱、电磁炉、电子锅、热水瓶等电器产品也都渐渐走向了数字化。数字化有以下优点:一是容易操作和控制,另一个是可以使用单片机来控制其功能,使其功能增强及使用方便。自然界的各种信号,如温度、湿度、压力、光、声音、气体都是模拟信号,要对自然界里的信号做处理,就需要一个传感器将自然界的各种信号,转换成电压或是电流信号,再将这些模拟信号,通过一个模拟-数字转换器(ADC),转成数字信号,由单片机来对数字信号做处理。要是将ADC 内建于单片机中,则使用上更加便利,也可大幅度降低成本。将模拟信号数字化有利于处理、运算及显示,尤其是我们日常生活中的各种家电产品如:冷气机、除湿机、电冰箱、洗衣机、微波炉、电磁炉等,不胜枚举。
上传时间: 2013-10-20
上传用户:debuchangshi