简介 中达电通STS系列是为保证用户在双路UPS(或两路市电等情况)供电条件下,进行两路AC电的相互不间断切换,来保证对负载的不间断供电。STS模块是由两路完全独立的电源组成的冗余系统,采用STS电源静态转换开关是一个简单有效的解决方法。我公司开发的STS模块用来保证您的敏感设备的不间断运行,STS采用了最新的电源技术和先进的数字控制,主要由智能控制板和高速可控硅构成,为用户提供最佳解决方案。 静态转换开关是一个双路输入的转换开关,平时一路接通,另一路断开,由一路UPS向负载供电。当供电一路UPS故障时,STS自动断开原接通的一路,接通原断开的一路,将负载接到另一路电源上。
上传时间: 2013-11-24
上传用户:chenxichenyue
单相桥式逆变电路为例:S1~S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。S1、S4闭合,S2、S3断开时,负载电压uo为正S1;S1、S4断开,S2、S3闭合时,uo为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。图5-1 逆变电路及其波形举例电阻负载时,负载电流io和uo的波形相同,相位也相同。阻感负载时,io滞后于uo,波形也不同(图5-1b)。t1前:S1、S4通,uo和io均为正。t1时刻断开S1、S4,合上S2、S3,uo变负,但io不能立刻反向。io从电源负极流出,经S2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大 (2)换流方式分类换流——电流从一个支路向另一个支路转移的过程,也称换相。开通:适当的门极驱动信号就可使其开通。关断:全控型器件可通过门极关断。半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。研究换流方式主要是研究如何使器件关断。本章换流及换流方式问题最为全面集中,因此在本章讲述1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。负载电流相位超前于负载电压的场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。
上传时间: 2013-10-15
上传用户:qingdou
为了有效地提升铅酸蓄电池的使用寿命,同时实现对充电过程的监控,设计出一种用单片机控制的36 V铅酸蓄电池充电电源。本电路采用反激式拓扑,连续电流工作模式,电源管理IC设计在电源的副边,由ELAN公司的EM78P258N单片机模拟,是用可编程器件模拟电源管理IC,实现智能电源低成本化的一次成功尝试,通过对单片机的软件设计实现了充电电源的状态显示、充电时间控制、报警、过温保护、过压保护、过流保护等功能。本充电器真正的实现了铅酸蓄电池的三段式充电过程,其最高输出功率可达90 W,效率约85%,成本不到20元,具有很高的市场竞争力。 Abstract: In order to extend the life of lead-acid battery efficiently and supervise the charging process meanwhile, a 36V lead-acid battery charge powe supply controlled by microcontroller is designed. The charger is flyback switching power supply and works in CCM mode. A EM78P258N microcontroller made by ELAN microelectronics corporation is used as power management IC which is designed at the secondary circuit. The project is a successful attempt to low-cost intelligent power used microcontroller simulating power management IC. The charger also has the functions of the status reveal, charge time control, alarming, thermal protect, current limit and overvoltage protect by the software design. The circuit actually implements the three-step charge process, whose power is up to 90W and whose efficiency can get 85%. The net cost of this charger is less than 20 RMB, so that the charger is of powerful market competitiveness.
上传时间: 2013-11-16
上传用户:cepsypeng
序号 参数 数据 单位 参数 说 明 . 输 入 参 数 变 量 1 umin V 交流输入电压最小值 2 umax V 交流输入电压最大值 3 fL Hz 电网频率 4 f kHz 开关频率 5 UO V 直流输出电压 6 PO W 输出功率 7 η % 电源效率 8 Z 0.5 损耗分配系数 9 UFB V 反馈电压
上传时间: 2013-10-14
上传用户:小码农lz
介绍了一款可以同时读写接触式卡和非接触式卡的多功能读卡器,详细阐述了射频芯片PN532和主控芯片ST2211的外围硬件电路和整个读卡器的软件构架。同时对读卡器电源管理、低功耗设计、多通信方式融合等进行了较详细的分析
上传时间: 2013-10-23
上传用户:chongchongsunnan
摘要:研究了用单片机控制的单相后备式方波输出UPS的控制技术及实现,分析了系统的工作原理,给出了硬件实现电路和算法框图,并测出了市电逆变相互转换等主要实验结果。关键词:不间断电源;单片机;推挽变换器
上传时间: 2013-10-28
上传用户:1051290259
C8051F单片机 C8051F系列单片机 单片机自20世纪70年代末诞生至今,经历了单片微型计算机SCM、微控制器MCU及片上系统SoC三大阶段,前两个阶段分别以MCS-51和80C51为代表。随着在嵌入式领域中对单片机的性能和功能要求越来越高,以往的单片机无论是运行速度还是系统集成度等多方面都不能满足新的设计需要,这时Silicon Labs 公司推出了C8051F系列单片机,成为SoC的典型代表。 C8051F具有上手快(全兼容8051指令集)、研发快(开发工具易用,可缩短研发周期)和见效快(调试手段灵活)的特点,其性能优势具体体现在以下方面: 基于增强的CIP-51内核,其指令集与MCS-51完全兼容,具有标准8051的组织架构,可以使用标准的803x/805x汇编器和编译器进行软件开发。CIP-51采用流水线结构,70%的的指令执行时间为1或2个系统时钟周期,是标准8051指令执行速度的12倍;其峰值执行速度可达100MIPS(C8051F120等),是目前世界上速度最快的8位单片机。 增加了中断源。标准的8051只有7个中断源Silicon Labs 公司 C8051F系列单片机扩展了中断处理这对于时实多任务系统的处理是很重要的扩展的中断系统向CIP-51提供22个中断源允许大量的模拟和数字外设中断一个中断处理需要较少的CPU干预却有更高的执行效率。 集成了丰富的模拟资源,绝大部分的C8051F系列单片机都集成了单个或两个ADC,在片内模拟开关的作用下可实现对多路模拟信号的采集转换;片内ADC的采样精度最高可达24bit,采样速率最高可达500ksps,部分型号还集成了单个或两个独立的高分辨率DAC,可满足绝大多数混合信号系统的应用并实现与模拟电子系统的无缝接口;片内温度传感器则可以迅速而精确的监测环境温度并通过程序作出相应处理,提高了系统运行的可靠性。 集成了丰富的外部设备接口。具有两路UART和最多可达5个定时器及6个PCA模块,此外还根据不同的需要集成了SMBus、SPI、USB、CAN、LIN等接口,以及RTC部件。外设接口在不使用时可以分别禁止以降低系统功耗。与其他类型的单片机实现相同的功能需要多个芯片的组合才能完成相比,C8051单片机不仅减少了系统成本,更大大降低了功耗。 增强了在信号处理方面的性能,部分型号具有16x16 MAC以及DMA功能,可对所采集信号进行实时有效的算法处理并提高了数据传送能力。 具有独立的片内时钟源(精度最高可达0.5%),设计人员既可选择外接时钟,也可直接应用片内时钟,同时可以在内外时钟源之间自如切换。片内时钟源降低了系统设计的复杂度,提高了系统可靠性,而时钟切换功能则有利于系统整体功耗的降低。 提供空闲模式及停机模式等多种电源管理方式来降低系统功耗 实现了I/O从固定方式到交叉开关配置。固定方式的I/O端口,既占用引脚多,配置又不够灵活。在C8051F中,则采用开关网络以硬件方式实现I/O端口的灵活配置,外设电路单元通过相应的配置寄存器控制的交叉开关配置到所选择的端口上。 复位方式多样化,C8051F把80C51单一的外部复位发展成多源复位,提供了上电复位、掉电复位、外部引脚复位、软件复位、时钟检测复位、比较器0复位、WDT复位和引脚配置复位。众多的复位源为保障系统的安全、操作的灵活性以及零功耗系统设计带来极大的好处。 从传统的仿真调试到基于JTAG接口的在系统调试。C8051F在8位单片机中率先配置了标准的JTAG接口(IEEE1149.1)。C8051F的JTAG接口不仅支持Flash ROM的读/写操作及非侵入式在系统调试,它的JTAG逻辑还为在系统测试提供边界扫描功能。通过边界寄存器的编程控制,可对所有器件引脚、SFR总线和I/O口弱上拉功能实现观察和控制。 C8051F系列单片机型号齐全,可根据设计需求选择不同规模和带有特定外设接口的型号,提供从多达100个引脚的高性能单片机到最小3mmX3mm的封装,满足不同设计的需要。 基于上述特点,Silicon Labs 公司C8051F系列单片机作为SoC芯片的杰出代表能够满足绝大部分场合的复杂功能要求,并在嵌入式领域的各个场合都得到了广泛的应用:在工业控制领域,其丰富的模拟资源可用于工业现场多种物理量的监测、分析及控制和显示;在便携式仪器领域,其低功耗和强大的外设接口也非常适合各种信号的采集、存储和传输;此外,新型的C8051F5xx系列单片机也在汽车电子行业中崭露头角。正是这些优势,使得C8051单片机在进入中国市场的短短几年内就迅速风靡,相信随着新型号的不断推出以及推广力度的不断加大,C8051系列单片机将迎来日益广阔的发展空间,成为嵌入式领域的时代宠儿 此系列单片机完全兼容MCS-51指令集,容易上手,开发周期短,大大节约了开发成本。C8051F系统集成度高,总线时钟可达25M
上传时间: 2013-11-24
上传用户:testAPP
智能直流高频开关电源系统微机监控模块的研制:摘要:智能直流高频开关电源系统以其高精度、低纹波、高效率等特性而正在逐步取代传统的可控硅整流装置。文章介绍了智能直流高频开关电源系统的特点及功能。给出一种双微机监控直流系统的构成方法以及微机监控模块的工作原理。关键词:单片机; 监控; 直流电源; 蓄电池2 高性能、高可靠性和高效率的直流电源系统在电力、电信、石化以及冶金等诸多领域中都有着相当广泛的应用。随着高频开关电源技术、应用电子技术和计算机技术的高速发展,直流高频开关电源系统依靠它的高精度、低纹波、高效率及功率因数等优越性能,正在逐步取代传统的可控硅整流装置。随着阀控式蓄电池(免维护蓄电池)越来越多地应用于直流电源系统,以及对直流系统的苛刻要求,高频开关电源的应用也日益广泛。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使阀控式蓄电池的使用寿命大大增加。此外,由于智能直流高频开关电源系统可以完全处于微机的智能化控制之下而不需要人为干预便可完成对整个系统的测量和控制。因此,采用智能高频开关电源可以最大限度地提高系统的性能。下面介绍智能直流高频开关电源系统及其微机监控模块的工作原理。
上传时间: 2014-12-28
上传用户:gokk
EZ-USB FX系列单片机USB外围设备设计与应用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB简介21.2 USB的发展历程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB与IEEE 1394的比较41.3 USB基本架构与总线架构61.4 USB的总线结构81.5 USB数据流的模式与管线的概念91.6 USB硬件规范101.6.1 USB的硬件特性111.6.2 USB接口的电气特性121.6.3USB的电源管理141.7 USB的编码方式141.8 结论161.9 问题与讨论16第2章 USB通信协议2.1 USB通信协议172.2 USB封包中的数据域类型182.2.1 数据域位的格式182.3 封包格式192.4 USB传输的类型232.4.1 控制传输242.4.2 中断传输292.4.3 批量传输292.4.4 等时传输292.5 USB数据交换格式302.6 USB描述符342.7 USB设备请求422.8 USB设备群组442.9 结论462.10 问题与讨论46第3章 设备列举3.1注册表编辑器473.2设备列举的步骤493.3设备列举步骤的实现--使用CATC分析工具513.4结论613.5问题与讨论61第4章 USB芯片与EZUSB4.1USB芯片的简介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3内含USB单元的微处理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片总揽介绍734.5USB芯片的选择与评估744.6问题与讨论80第5章 设备与驱动程序5.1阶层式的驱动程序815.2主机的驱动程序835.3驱动程序的选择865.4结论865.5问题与讨论87第6章 HID群组6.1HID简介886.2HID群组的传输速率886.3HID描述符906.3.1报告描述符936.3.2主要 main 项目类型966.3.3整体 global 项目卷标976.3.4区域 local 项目卷标986.3.5简易的报告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容测试程序1016.4HID设备的基本请求1026.5Windows通信程序1036.6问题与讨论106PART 2 硬件技术篇第7章 EZUSB FX简介7.1简介1097.2EZUSB FX硬件框图1097.3封包与PID码1117.4主机是个主控者1137.4.1从主机接收数据1137.4.2传送数据至主机1137.5USB方向1137.6帧1147.7EZUSB FX传输类型1147.7.1批量传输1147.7.2中断传输1147.7.3等时传输1157.7.4控制传输1157.8设备列举1167.9USB核心1167.10EZUSB FX单片机1177.11重新设备列举1177.12EZUSB FX端点1187.12.1EZUSB FX批量端点1187.12.2EZUSB FX控制端点01187.12.3EZUSB FX中断端点1197.12.4EZUSB FX等时端点1197.13快速传送模式1197.14中断1207.15重置与电源管理1207.16EZUSB 2100系列1207.17FX系列--从FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各种特性的摘要1227.20修订ID1237.21引脚描述123第8章 EZUSB FX CPU8.1简介1308.28051增强模式1308.3EZUSB FX所增强的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX内部RAM1318.6I/O端口1328.7中断1328.8电源控制1338.9特殊功能寄存器 SFR 1348.10内部总线1358.11重置136第9章 EZUSB FX内存9.1简介1379.28051内存1389.3扩充的EZUSB FX内存1399.4CS#与OE#信号1409.5EZUSB FX ROM版本141第10章 EZUSB FX输入/输出端口10.1简介14310.2I/O端口14310.3EZUSB输入/输出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX输入/输出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9状态位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C数据16010.11接收 READ I2C数据16010.12I2C激活加载器16010.13SFR寻址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX设备列举与重新设备列举11.1简介16711.2预设的USB设备16911.3USB核心对于EP0设备请求的响应17011.4固件下载17111.5设备列举模式17211.6没有存在EEPROM17311.7存在着EEPROM, 第一个字节是0xB0 0xB4, FX系列11.8存在着EEPROM, 第一个字节是0xB2 0xB6, FX系列11.9配置字节0,FX系列17711.10重新设备列举 ReNumerationTM 17811.11多重重新设备列举 ReNumerationTM 17911.12预设描述符179第12章 EZUSB FX批量传输12.1简介18812.2批量输入传输18912.3中断传输19112.4EZUSB FX批量IN的例子19112.5批量OUT传输19212.6端点对19412.7IN端点对的状态19412.8OUT端点对的状态19512.9使用批量缓冲区内存19512.10Data Toggle控制19612.11轮询的批量传输的范例19712.12设备列举说明19912.13批量端点中断19912.14中断批量传输的范例20112.15设备列举说明20512.16自动指针器205第13章 EZUSB控制端点013.1简介20913.2控制端点EP021013.3USB请求21213.3.1取得状态 Get_Status 21413.3.2设置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5设置描述符(Set Descriptor)22313.3.6设置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8设置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10设置地址(Set_Address)22713.3.11同步帧22713.3.12固件加载228第14章 EZUSB FX等时传输14.1简介22914.2等时IN传输23014.2.1初始化设置23014.2.2IN数据传输23014.3等时OUT传输23114.3.1初始化设置23114.3.2数据传输23214.4设置等时FIFO的大小23214.5等时传输速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速传输 仅存于2100系列 23614.6.1快速写入23614.6.2快速读取23714.7快速传输的时序 仅存于2100系列 23714.7.1快速写入波形23814.7.2快速读取波形23914.8快速传输速度(仅存于2100系列)23914.9其余的等时寄存器24014.9.1除能等时寄存器24014.9.20字节计数位24114.10以无数据来响应等时IN令牌24214.11使用等时FIFO242第15章 EZUSB FX中断15.1简介24315.2USB核心中断24415.3唤醒中断24415.4USB中断信号源24515.5SUTOK与SUDAV中断24815.6SOF中断24915.7中止 suspend 中断24915.8USB重置中断24915.9批量端点中断25015.10USB自动向量25015.11USB自动向量译码25115.12I2C中断25215.13IN批量NAK中断 仅存于AN2122/26与FX系列 25315.14I2C STOP反相中断 仅存于AN2122/26与FX系列 25415.15从FIFO中断 INT4 255第16章 EZUSB FX重置16.1简介25716.2EZUSB FX打开电源重置 POR 25716.38051重置的释放25916.3.1RAM的下载26016.3.2下载EEPROM26016.3.3外部ROM26016.48051重置所产生的影响26016.5USB总线重置26116.6EZUSB脱离26216.7各种重置状态的总结263第17章 EZUSB FX电源管理17.1简介26517.2中止 suspend 26617.3回复 resume 26717.4远程唤醒 remote wakeup 269第18章 EZUSB FX系统18.1简介27118.2DMA寄存器描述27218.2.1来源. 目的. 传输长度地址寄存器27218.2.2DMA起始与状态寄存器27518.2.3DMA同步突发使能寄存器27518.2.4虚拟寄存器27818.3RD/FRD与WR/FWR DMA闪控的选择27818.4DMA闪控波形与延伸位的交互影响27918.4.1DMA外部写入27918.4.2DMA外部读取280第19章 EZUSB FX寄存器19.1简介28219.2批量数据缓冲区寄存器28319.3等时数据FIFO寄存器28419.4等时字节计数寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C输入/输出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等时控制/状态寄存器29119.10I2C寄存器29219.11中断29419.12端点0控制与状态寄存器29919.13端点1~7的控制与状态寄存器30019.14整体USB寄存器30519.15快速传输30919.16SETUP数据31119.17等时FIFO的容量大小31119.18通用I/F中断使能31219.19通用中断请求31219.20输入/输出端口寄存器D与E31319.20.1端口D输出31319.20.2输入端口D脚位31319.20.3端口D输出使能31319.20.4端口E输出31319.20.5输入端口E脚位31419.20.6端口E输出使能31419.21端口设置31419.22接口配置31419.23端口A与端口C切换配置31619.23.1端口A切换配置#231619.23.2端口C切换配置#231719.24DMA寄存器31919.24.1来源. 目的. 传输长度地址寄存器31919.24.2DMA起始与状态寄存器32019.24.3DMA同步突发使能寄存器32019.24.4选择8051 A/D总线作为外部FIFO321PART 3 固件技术篇第20章 EZUSB FX固件架构与函数库20.1固件架构总览32320.2固件架构的建立32520.3固件架构的副函数钩子32520.3.1工作分配器32620.3.2设备请求 device request 32620.3.3USB中断服务例程32920.4固件架构整体变量33220.5描述符表33320.5.1设备描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端点描述符33520.5.5字符串描述符33520.5.6群组描述符33520.6EZUSB FX固件的函数库33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整体变量33820.7固件架构的原始程序代码338第21章 EZUSB FX固件范例程序21.1范例程序的简介34621.2外围I/O测试程序34721.3端点对, EP_PAIR范例35221.4批量测试, BulkTest范例36221.5等时传输, ISOstrm范例36821.6问题与讨论373PART 4 实验篇第22章 EZUSB FX仿真器22?1简介37522?2所需的工具37622?3EZUSB FX框图37722.4EZUSB最终版本的系统框图37822?5第一次下载程序37822.6EZUSB FX开发系统框图37922.7设置开发环境38022.8EZUSB FX开发工具组的内容38122.9EZUSB FX开发工具组软件38222.9.1初步安装程序38222.9.2确认主机 个人计算机 是否支持USB38222.10安装EZUSB控制平台. 驱动程序以及文件38322.11EZUSB FX开发电路板38522.11.1简介38522.11.2开发电路板的浏览38522.11.3所使用的8051资源38622.11.4详细电路38622.11.5LED的显示38722.11.6Jumper38722.11.7连接器39122.11.8内存映象图39222.11.9PLD信号39422.11.10PLD源文件文件39522.11.11雏形板的扩充连接器P1~P639722.11.12Philips PCF8574 I/O扩充IC40022.12DMA USB FX I/O LAB开发工具介绍40122.12.1USBFX简介40122.12.2USBFX及外围整体环境介绍40322?12?3USBFX与PC连接软件介绍40422.12.4USBFX硬件功能介绍404第23章 LED显示器输出实验23.1硬件设计与基本概念40923.2固件设计41023.3.1固件架构文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外围接口文件PERIPH.C41723.4固件程序代码的编译与链接42123.5Windows程序, VB设计42323.6INF文件的编写设计42423.7结论42623.8问题与讨论427第24章 七段显示器与键盘的输入/输出实验24.1硬件设计与基本概念42824.2固件设计43124.2.1七段显示器43124.2.24×4键盘扫描43324.3固件程序代码的编译与链接43424.4Windows程序, VB设计43624.5问题与讨论437第25章 LCD文字型液晶显示器输出实验25.1硬件设计与基本概念43825.1.1液晶显示器LCD43825.2固件设计45225.3固件程序代码的编译与链接45625.4Windows程序, VB设计45725.5问题与讨论458第26章 LED点阵输出实验26.1硬件设计与基本概念45926.2固件设计46326.3固件程序代码的编译与链接46326.4Windows程序, VB设计46526.5问题与讨论465第27章 步进电机输出实验27.1硬件设计与基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介绍46927.2固件设计47327.3固件程序代码的编译与链接47427.4Windows程序, VB设计47627.5问题与讨论477第28章 I2C接口输入/输出实验28.1硬件设计与基本概念47828.2固件设计48128.3固件程序代码的编译与链接48328.4Windows程序, VB设计48428.5问题与讨论485第29章 A/D转换器与D/A转换器的输入/输出实验29.1硬件设计与基本概念48629.1.1A/D转换器48629.1.2D/A转换器49029.2固件设计49329.2.1A/D转换器的固件设计49329.2.2D/A转换器的固件设计49629.3固件程序代码的编译与链接49729.4Windows程序, VB设计49829.5问题与讨论499第30章 LCG绘图型液晶显示器输出实验30.1硬件设计与基本概念50030.1.1绘图型LCD50030.1.2绘图型LCD控制指令集50330.1.3绘图型LCD读取与写入时序图50530.2固件设计50630.2.1LCG驱动程序50630.2.2USB固件码51330.3固件程序代码的编译与链接51630.4Windows程序, VB设计51730.5问题与讨论518附录A Cypress控制平台的操作A.1EZUSB控制平台总览519A.2主画面520A.3热插拔新的USB设备521A.4各种工具栏的使用524A.5故障排除526A.6控制平台的进阶操作527A.7测试Unary Op工具栏上的按钮功能528A.8测试制造商请求的工具栏 2100 系列的开发电路板 529A.9测试等时传输工具栏532A.10测试批量传输工具栏533A.11测试重置管线工具栏535A.12测试设置接口工具栏537A.13测试制造商请求工具栏 FX系列开发电路板A.14执行Get Device Descriptor 操作来验证开发板的功能是否正确539A.15从EZUSB控制平台中, 加载dev_io的范例并且加以执行540A.16从Keil侦错应用程序中, 加载dev_io范例程序代码, 然后再加以执行542A.17将dev_io 目标文件移开, 且使用Keil IDE 集成开发环境 来重建545A.18在侦错器下执行dev_io目标文件, 并且使用具有侦错能力的IDE547A.19在EZUSB控制平台下, 执行ep_pair目标文件A.20如何修改fw范例, 并在开发电路板上产生等时传输550附录BEZUSB 2100系列及EZUSB FX系列引脚表B.1EZUSB 2100系列引脚表555B?2EZUSB FX系列引脚图表561附录C EZUSB FX寄存器总览附录D EEPROM烧录方式
上传时间: 2013-11-21
上传用户:努力努力再努力
基于单片机PWM控制逆变电源的设计:设计了一种基于AT89C51 控制SA4828 的逆变电源,它采用IGBT 作为功率器件, IR2110 作为IGBT 的驱动芯片,并采用恒 U/F 的控制策略。关键词:单片机 脉宽调制 逆变电源 本论文主要目的是设计一种全数字化三相PWM 逆变电源。三相SPWM 发生器是逆变电源的核心部分,它的性能好坏,直接关系到整个逆变电源的工作状况。鉴于以80C196MC或TMS320LF240 为核心组成的控制电路,能实现电源的全数字化控制,但系统较复杂,软件工作量大,研制周期长。在本设计中,我们选用了AT89C51 控制MITEL 公司的SA4828芯片作为波形发生器。 二、系统结构功率流程:市电输入经输入保护电路滤除噪声后,进行整流、滤波变成直流电压,然后这个直流电压输入到桥式逆变电路。PWM 发生器在单片机的控制下,通过驱动电路对输出脉冲进行调制就可改变输出电压和频率,再经输出变压器隔离后供给负载。主电路中根据磁路集成原理,将变压器和滤波电感集成为一个磁性元件,再在变压器的次级并以适当的电容,组成滤波网络以获得正弦波形输出。整个电路分为五大部分:整流滤波、全桥逆变电路、驱动电路以及将单片机控制PWM 产生器的控制电路和保护电路。另外在输入和输出端还有输入滤波和输出滤波电路。
上传时间: 2013-11-07
上传用户:xyipie