具有带通选择性的ICA算法可以改善对于带通时间序列的分离以及对于周期性脑功能响应信号的提取. 因此本文提出的方案可将被估计信号, 如:周期性响应信号以及具有平滑空间分布的脑功能激活区, 的先验特性以特
具有带通选择性的ICA算法可以改善对于带通时间序列的分离以及对于周期性脑功能响应信号的提取. 因此本文提出的方案可将被估计信号, 如:周期性响应信号以及具有平滑空间分布的脑功能激活区, 的先验特性以特征选择的方式加入ICA算法用以提高对此类信号的估计...
具有带通选择性的ICA算法可以改善对于带通时间序列的分离以及对于周期性脑功能响应信号的提取. 因此本文提出的方案可将被估计信号, 如:周期性响应信号以及具有平滑空间分布的脑功能激活区, 的先验特性以特征选择的方式加入ICA算法用以提高对此类信号的估计...
本文提出一种用于独立成份分析(ICA)的特征选择滤波方案用于改善ICA算法对关键独立成份(SOI)的分离和提取,关键独立成份在其信号样本数据的空间分布上具有一定特征. 本文以平滑滤波为例,表明加入此类特征滤波的ICA算法可以改善对于视觉功能区等平滑图象信号的提取. 因此, 这种特征滤波技术在估计具有...
提出了一种利用S函数实验结果表明:ICA可以将 脑电信号中包含的心电(ECG)、眼电(EOG)等多种干扰信号成功地分离出来...
基于ICA的信号分离程序,是一个很好的信号处理方面的程序...
摘要部分:这一快速算法的出现对数字 信号分析领域的发展起到了极大的推动作用。从此以后,它作为频谱分析的基础得到了 由于计算机只能对信号的有限多个样本进行计算....