第1章 集成运放应用电路设计须知 1.1 集成运放简介 1.1.1 集成运放的内部框图、分类和图形符号 1.1.2 集成运放的引脚功能、封装及命名方法 1.1.3 集成运放的参数 1.2 理想运算放大器 1.2.1 运放的理想参数及理想运放的电路模型 1.2.2 简化设计的基本准则 1.3 选择电阻器须知 1.3.1 电阻器系列及温度系数 1.3.2 常用电阻器的结构与特点及参数 1.4 选用电容器须知 1.4.1 电容器容量系列、损耗及绝缘电阻 1.4.2 常用电容器的类型、特点及规格 1.5 集成运放的电源 1.5.1 集成运放电源的选择 1.5.2 各类电源系列 1.5.3 集成运放电源使用注意事项 第2章 集成运放调零、相位补偿与保护电路的设计 2.1 偏置电流补偿电路及调零电路的设计 2.1.1 偏置电流补偿电路的设计 2.1.2 调零电路的设计
上传时间: 2013-10-09
上传用户:wanqunsheng
FOD8318是飞兆半导体生产的一款带保护功能的IGBT驱动光耦,由于IGBT的特性决定了它需要在合适的条件下才能稳定的工作,因此各种保护电路的设计直接决定了整个器件的稳定性,为了降低开发人员的设计难度,IGBT驱动光耦厂商往往将各种保护电路直接集成到光耦内部,这为产品开发人员提供能极大的方便。
上传时间: 2015-01-03
上传用户:tou15837271233
为一家电动自行车厂家设计的电路,里面有protel原理图+pcb,控制器是C8051,各种保护电路都有,此电路已成功在实验平台上调试通过,性价比高,请放心参考。研发电动车驱动电路的朋友不妨看看哦。
上传时间: 2017-02-24
上传用户:gxmm
撬棒保护电路的接入会改变低电压穿越过程中双馈感应发电机(DFIG)定转子磁链间的耦合过程和耦合强度,由此将影响机组磁链衰减动态和撬棒保护性能。针对这一问题,提出了一种刻画定子磁链与转子绕组交链感应作用的磁链耦合系数,将电网故障后电机的磁链暂态耦合过程处理为不同状态的叠加,综合研究撬棒电阻对转子感应磁链正序、负序和暂态反向交流分量幅值和相角的耦合规律,用转子磁链空间矢量图和矢量轨迹图描述转子磁链动态响应过程。最后,针对电网不对称故障下撬棒取值的问题,提出了一种基于转子磁链幅值配比原理和最优倾角的撬棒阻值选取方法。该方法可减小磁链耦合不当对机组的暂态冲击,从而有效改善机组的无功外特性和瞬态性能。采用MATLAB/Simulink仿真验证了理论分析和所提方法的正确性。
标签: 双馈感应发电机 低电压穿越 撬棒保护 磁链动态特性 磁链耦合
上传时间: 2016-01-01
上传用户:icebee251
华为通信产品关于电源口、信号口和天馈口的保护电路设计指导规范
标签: 防护电路
上传时间: 2022-05-03
上传用户:
1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成,20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路:按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路1.2整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命:1957年美国通用公司研制了第一个品闸管,标志着电力电子技术的诞生:70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段:80年代后期,以绝缘极双极型品体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。另外,采用全控型器件的电路的主要控制方式为PWM脉宽调制式,后来,又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC),随着全控型电力电子器件的发展,电力电电路的工作频率也不断提高。同时。电力电子器件的开关损耗也随之增大,为了减小开关损耗,软开关技术便应运而生,零电压开关(ZVS)和零电流开关(ZCS)把电力电子技术和整流电路的发展推向了新的高潮。
标签: 整流电路
上传时间: 2022-06-18
上传用户:
1.1 设计总体要求(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。(3)能正确设计电路,画出线路图,分析电路原理。4)按时参加课程设计指导,定期汇报课程设计进展情况。(5)广泛收集相关技术资料。(6)独立思考,刻苦钻研,严禁抄袭(7)按时完成课程设计任务,认真、正确地书写课程设计报告。8)培养实事求是、严谨的工作态度和认真的工作作风。1.2 设计课题任务及要求设计一个IGBT升压斩波电路设计(纯电阻负载),要求1、输入直流电压:Ud-50V;2、输出功率:300W;3、开关频率:5KHz;5、输出电压脉率:小于10%.1.3 设计方案与总体框图斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。其中,主电路模块主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由全控器件IGBT的开通与关断的时间占空比来决定输出电压U的大小。控制与驱动电路模块:用直接产生PWM的专用芯片SG3525产生PWM信号送给驱动电路,经驱动电路来控制IGBT的开通与关断。电路模块:驱动电路把控制信号转换为加在IGBT控制端和公共端之间,用来驱动1GBT的开通与关断。驱动电路模块:控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。
上传时间: 2022-06-19
上传用户:
本论文所涉及的电源管理方案来源于与台湾某上市公司的横向合作项目,在电源管理产品朝着低功耗、高效率和智能化方向发展的形势下,论文采用了一种开关电源与低压降(LDO)线性电压调节器结合应用的集成方案,即将LDO作为升压型电源管理芯片的内部供电模块。按照方案的要求,本文设计了一种含缓冲级的低压降线性电压调节器。设计采用0.6um 30V BCD工艺,实现LDO的输入电压范围为6-13V:满足在-25-85℃的工作温度范围内,输出电压为5V:在典型负载电流(12.5mA)下,LDO的压降电压为120mv.文章首先阐述了整个方案的工作原理,给出LDO设计的指标要求;其次,依据系统方案的指标要求和制造工艺约束,实现包含误差放大器、基准源和保护电路等子模块在内的电压调整器:此外,文章还着重探讨了“如何利用放大器驱动100pF数量级的大电容负载”的问题:最后,给出整个模块总体电路的仿真验证结果。LDO的架构分析和设计以及基准源的设计是本文的核心内容。在LDO架构设计部分,文章基于对三种不同LDO拓扑的分析,选择并实现了含缓冲器级的LDO.设计中通过改进反馈网络,采用反馈电容,实现对LDO的环路补偿。同时,为提高误差放大器驱动功率管的能力、适应LDO低功耗发展的需求,文章探讨了如何使用放大器驱动大负载电容的问题。基于密勒定理和根轨迹原理,本文通过研究密勒电容的作用,采用MPC(Miller-Path-Compensation)结构,实践了两级放大器驱动大负载电容的方案,并把MPC补偿技术推广到三级放大器的设计中。
上传时间: 2022-06-22
上传用户:
文章首先阐述了整个方案的工作原理,给出LDO设计的指标要求;其次,依据系统方案的指标要求和制造1艺约束,实现包含误差放大器、基准源和保护电路等了模块在内的电压调整器:此外,文章还着重探讨了“如何利用放大器驱动100pF数量级的大电容负载"的问题;最后,给出整个模块总体电路的仿真验证结果。LDO的架构分析和设计以及基准源的设计是本文的核心内容。在LDO架构设计部分,文章基于对三种不同LDO拓扑的分析,选择并实现了含缓冲器级的LDO./设计中通过改进反馈网络,采用反馈电容,实现对LDO的环路补偿。同时,为提高误差放大器驱动功率管的能力、适应LDO低功耗发展的需求,文章探讨了如何使用放大器驱动大负载电容的问题,基于密勒定理和根轨迹原理,本文通过研究密勒电容的作用,采用MPC(Miller-Path-Compersation)结构,实践了两级放大器驱动大负载电容的方案,并把MPC补偿技术推广到三级放大器的设计中。文章设计的CRF(CRF:Current Re ference controlled by Feedback)电流基准是基于对传统自启动基准电流源的改进实现的。CRF基准电流源架构中存在一条阻性的电流道路,确保其在加载电源电压的过程中能够实现快速启动,响应速度达到1ps:而传统自启动基准电流源在相同的设计参数下,响应速度长达120us.CRF基准电流源突破了响应速度对其应用的限制。
上传时间: 2022-06-23
上传用户:
内容摘要电力电子为人类做出了不可磨灭的贡献,因此研究电力电子件是为时代所需。本次课程设计为三相半波整流电路的设计,本组选择方案为三相半波可控整流电路的设计。主要分为三大模块:主电路一触发电路和保护电路,其中触发电路为集成电路。所选器件基本为电阻-电感和门极可关断晶闸管(GTO)等。由于当负载为电阻和电阻电感时的电路的工作情况不同,所以电路中对它们各自工作的情况进行系统而详细的分析。设计中对电路的工作原理以及电路器件的数计算等均有涉及。根据计算的结果,又遵循经济安全的原则,设计中对器件的型号做出了最后的选择。由于时间仓促,难免有些差错,望批评指正。1设计要求(1)输入电压:三相交流380V、5012(2)输出功率:2KW(3)用集成电路组成触发电路(4)负载性质:电阻、电阻电感(5)对电路进行设计计算说明(6)计算所用元器件型号参数2整流电路的分类及案选择整流电路将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。可以从多种角度对整流电路进行分类:按电路结构可分为桥式电路和零式电路;按组成的器件可分为不可控半控一全控三种;按交流输入相数可分为单相电路和多相电路;按电压器二次侧电流的方向是单向或双向,又分为单拍和双拍电路。鉴于本课程设计,需要三相半波整流电路,可有两种方案选择:方案1,三相半波不可控整流电路;方案2,三相半波可控整流电路。对于三相半波不可控整流电路,电路中采用了三个二极管整流,此电路不需要触发电路,同时负载电压不可调,而三相半波可控整流电路,电路中采用三个晶闸管整流,电路中有专门的触发电路,触发电路适时的给予脉冲,可调节输出电压,可适合不同电压的要求,并且直流脉动小,可承受整流负载较大,常见使用等优点,所以本次课程设计选择三相半波可控整流电路,即方案2,其大体图形如图(1)。
上传时间: 2022-06-24
上传用户:bluedrops