代码搜索结果
找到约 1,827 项符合
Recognition 的代码
knnrloo.m
function [recogRate, computed, nearestIndex] = knnrLoo(DS, param, plotOpt)
%knnrLoo: Leave-one-out recognition rate of KNNR
% Usage: [recogRate, computed, nearestIndex] = knnrLoo(DS, param, plotOpt)
contents.m
% DCPR Toolbox: Data Clustering and Pattern Recognition Toolbox
%
% Test Data Generation:
% randn2 - Generate 2D Gaussian-distributed data
% dcdata - Generate data for data clustering algorithms
dcprdataplot3.m
function dcprDataPlot3(DS, plotTitle, displayAnnotation)
% dcprDataPlot: Plot of 3D data for data clustering or pattern recognition
% Usage: dcprDataPlot3(DS, plotTitle, inputName, pointLabel)
% D
keytransposition01.m
% This script demonstrate the use of Picard iteration on finding the optimal pitch shift for DTW in melody recognition
% inputPitch: input pitch vector
inputPitch=[48.044247 48.917323 49.836778 50
knnrloo.m
function [recogRate, computed, nearestIndex] = knnrLoo(DS, k, plotOpt)
%knnrLoo: Leave-one-out recognition rate of KNNR
% Usage: [recogRate, computed, nearestIndex] = knnrLoo(DS, k, plotOpt)
% rec
index.htm
title="DCPR (Data Clustering & Pattern Recognition) Toolbox";
D
dcprdataplot.m
function dcprDataPlot(DS, plotTitle, displayAnnotation)
% dcprDataPlot: Plot of 2D data for data clustering or pattern recognition
% Usage: dcprDataPlot(DS, plotTitle, inputName, pointLabel)
% DS:
confmatget.m
function confMat = confMatGet(desiredOutput, computedOutput)
% confMatGet: Get confusion matrix from recognition result
% Usage: confMat = confMatGet(desiredOutput, computedOutput)
%
% For example