代码搜索结果
找到约 1,827 项符合
Recognition 的代码
if-2.c
/* { dg-do preprocess } */
/* { dg-options -pedantic-errors } */
#if 'a' != 'a' || '\001' != 1 || '\x12' != 0x12
#error a,1,0x12 /* { dg-bogus "#error" "basic charconst recognition" } */
#endif
#if
knnrviakmeans01.txt
Use of KNNR for Iris data:
Size of design set (odd-indexed data)= 75
Size of test set (even-indexed data) = 75
After k-means clustering, size of design set = 9
Recognition rate = 97.3333%
featureselectexhaustive01.txt
Construct 15 KNN models, each with up to 4 inputs selected from 4 candidates...
modelIndex 1/15: sepal length --> Recognition rate = 58.666667%
modelIndex 2/15: sepal width --> Recognition rate =
irises01.txt
Construct 15 KNN models, each with up to 4 inputs selected from 4 candidates...
modelIndex 1/15: 1 --> Recognition rate = 58.666667%
modelIndex 2/15: 2 --> Recognition rate = 48.000000%
modelInde
featureselectexhaustive03.txt
Construct 15 KNN models, each with up to 4 inputs selected from 4 candidates...
modelIndex 1/15: sepal length --> Recognition rate = 58.666667%
modelIndex 2/15: sepal width --> Recognition rate =
irissfs01.txt
Construct 10 KNN models, each with up to 4 inputs selected from 4 candidates...
Selecting input 1:
Model 1/10:1 --> Recognition rate = 58.7%
Model 2/10:2 --> Recognition rate = 48.0%
Model 3/1
feaselbyes4wine01.txt
Construct 2379 KNN models, each with up to 5 inputs selected from 13 candidates...
modelIndex 1/2379: 1 --> Recognition rate = 59.550562%
modelIndex 2/2379: 2 --> Recognition rate = 55.056180%
winees01.txt
Construct 2379 KNN models, each with up to 5 inputs selected from 13 candidates...
modelIndex 1/2379: 1 --> Recognition rate = 59.550562%
modelIndex 2/2379: 2 --> Recognition rate = 55.056180%
random6es01.txt
Construct 63 KNN models, each with up to 6 inputs selected from 6 candidates...
modelIndex 1/63: 1 --> Recognition rate = 49.500000%
modelIndex 2/63: 2 --> Recognition rate = 49.000000%
modelInde
featureselectexhaustive02.txt
Construct 63 KNN models, each with up to 6 inputs selected from 6 candidates...
modelIndex 1/63: 1 --> Recognition rate = 42.500000%
modelIndex 2/63: 2 --> Recognition rate = 46.000000%
modelInde