代码搜索结果

找到约 3,225 项符合 Recognition 的代码

recognition.m

function [Numeral]=Recognition(StrokeTop,StrokeLeft,StrokeRight,StrokeBottom,Comp) % 采用四边的轮廓结构特征和笔划统计(仅针对 0 和 8)识别残缺数字 % Comp 是用于识别 0和8 的底部补充信息 StrT='T'; StrL='T'; StrR='T'; StrB='T'; RStr='T';

recognition.m

function OutputName = Recognition(TestImage, m_database, V_PCA, V_Fisher, ProjectedImages_Fisher) % Recognizing step.... % % Description: This function compares two faces by projecting the images i

recognition.m

function OutputName = Recognition(TestImage, m, A, Eigenfaces) % Recognizing step.... % % Description: This function compares two faces by projecting the images into facespace and % measuring the

recognition.m

% % 文本文件sDataFile必须为以下格式: % Database D:\kk.h\study\人脸库\ORL\92x112\ % TrainSet 1 % TestSet 2,3,4,5,6,7,8,9,10 % % Database D:\kk.h\study\人脸库\ORL\92x112\ % TrainSet 1,2,3 % TestSet 4,5,6,7,8,

recognition.m

function [Numeral]=Recognition(StrokeTop,StrokeLeft,StrokeRight,StrokeBottom,Comp) % 采用四边的轮廓结构特征和笔划统计(仅针对 0 和 8)识别残缺数字 % Comp 是用于识别 0和8 的底部补充信息 StrT='T'; StrL='T'; StrR='T'; StrB='T'; RStr='T';

recognition.m

% Copyright (C) 2006, Eric Chi. % chijing80@hotmail.com % Test samples set. testSamplesNum = samplesPerPerson - trainSamplesNum; testSamplesTotal = testSamplesNum * personsNum; % Recogniton b

recognition.txt

0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0

recognition.m

function [Numeral]=Recognition(StrokeTop,StrokeLeft,StrokeRight,StrokeBottom,Comp) % 采用四边的轮廓结构特征和笔划统计(仅针对 0 和 8)识别残缺数字 % Comp 是用于识别 0和8 的底部补充信息 StrT='T'; StrL='T'; StrR='T'; StrB='T'; RStr='T';

recognition.m

% % 文本文件sDataFile必须为以下格式: % Database D:\kk.h\study\人脸库\ORL\92x112\ % TrainSet 1 % TestSet 2,3,4,5,6,7,8,9,10 % % Database D:\kk.h\study\人脸库\ORL\92x112\ % TrainSet 1,2,3 % TestSet 4,5,6,7,8,