代码搜索结果
找到约 2,425 项符合
Measurement 的代码
chap7_8.m
%Kalman filter
%x=Ax+B(u+w(k));
%y=Cx+D+v(k)
clear all;
close all;
ts=0.001;
M=3000;
%Continuous Plant
a=25;b=133;
sys=tf(b,[1,a,0]);
dsys=c2d(sys,ts,'z');
[num,den]=tfdata(dsys,'v');
closepsat.m
% CLOSEPSAT clear all PSAT global variables from workspace
%
% CLOSEPSAT
%
% Author: Federico Milano
% Date: 22-Feb-2004
% Version: 1.0.0
%
% E-mail: fmilano@thunderbox.uwaterloo.ca
% Web
hybridbody.m
function [AltErr, VelErr, BallErr] = HybridBody
% Hybrid extended Kalman filter example.
% Track a body falling through the atmosphere.
% Outputs are:
% AltErr = RMS altitude estimation error
correlated.m
function Correlated(M, MFilter)
% Kalman filter simulation using correlated process and measurement noise.
% This illustrates the improvement in filter results that can be attained
% when the cor
kalmanconstrained.m
function KalmanConstrained
% function KalmanConstrained
% This m-file simulates a vehicle tracking problem.
% The vehicle state is estimated with a Kalman filter.
% In addition, with the a prior
discretekfex1.m
function DiscreteKFEx1(N)
% Discrete time Kalman filter for position estimation of a Newtonian system.
% This example illustrates the effectiveness of the Kalman filter for state
% estimation. It
measure.h
/******************************************************************************/
/* */
/* MEASURE.H: struct type and e
chap7_11.m
%Discrete Kalman filter for PID control
%Reference kalman_2rank.m
%x=Ax+B(u+w(k));
%y=Cx+D+v(k)
clear all;
close all;
ts=0.001;
%Continuous Plant
a=25;b=133;
sys=tf(b,[1,a,0]);
dsys=c2d(sy
chap7_9.m
%Kalman filter
%x=Ax+B(u+w(k));
%y=Cx+D+v(k)
clear all;
close all;
ts=0.001;
M=3000;
%Continuous Plant
a=25;b=133;
sys=tf(b,[1,a,0]);
dsys=c2d(sys,ts,'z');
[num,den]=tfdata(dsys,'v');
chap7_10f.m
%Discrete Kalman filter
%x=Ax+B(u+w(k));
%y=Cx+D+v(k)
function [u]=kalman(u1,u2,u3)
persistent A B C D Q R P x
yv=u2;
if u3==0
x=zeros(2,1);
ts=0.001;
a=25;b=133;
sys=tf(b,[1,a