代码搜索结果
找到约 2,356 项符合
Measurement 的代码
mudm1.m
% mudm1.m
% Scope: This MATLAB macro implements the discrete Kalman filter measurement
% updating using Bierman's U-D measurement update algorithm. On
timetr.m
% timetr.m
% Scope: This MATLAB macro computes GPS time of transmission from time of
% measurement (reception) for a satellite pseudorange measurement;
%
josephb.m
function [K,Pout] = josephb(z,R,H,P)
%
% Joseph "stabilized" Kalman filter measurement
% update as modified by Bierman.
%
T1 = sqrt(R);
T2 = H/T1;
T4 = P*T2';
T5 = T2*T4 + 1;
K = T4/T5;
T7
joseph.m
function [K,Pout] = joseph(z,R,H,P)
%
% P. D. Joseph's "stabilized" Kalman filter measurement
% update.
%
n = length(H);
zp = sqrt(1/R);
Hp = zp*H;
K = (Hp*P*Hp' + 1) \ P*Hp';
W = eye
josephdv.m
function [K,Pout] = josephdv(z,R,H,P)
%
% Joseph "stabilized" Kalman filter measurement
% update as implemented by De Vries.
%
T1 = P*H';
T2 = H*T1 + R;
K = T1/T2;
T3 = .5*K*T2 - T1;
T4 = T3
add_observation_noise.m
function z= add_observation_noise(z,R, addnoise)
%function z= add_observation_noise(z,R, addnoise)
%
% Add random measurement noise. We assume R is diagonal.
if addnoise == 1
len= size(
observe_heading.m
function observe_heading(phi, useheading)
%function observe_heading(phi, useheading)
%
% Perform state update for a given heading measurement, phi,
% with fixed measurement noise: sigmaPhi
global
predict.m
%PREDICT Measurement prediction of alpha,r-line features.
% [LR,HR,HM] = PREDICT(L,XR,CR,CRL) transforms the alpha,r-line
% feature L represented in the world frame into the robot frame
% given
mesg.m
%MESG Display progress information.
% MESG subroutine displays progress status when performing MIMO system
% performance measurement. Therefore it makes no sense to run this
% routine alone.
kf_lhood.m
%KF_LHOOD Kalman Filter measurement likelihood
%
% Syntax:
% LH = KF_LHOOD(X,P,Y,H,R)
%
% In:
% X - Nx1 state mean
% P - NxN state covariance
% Y - Dx1 measurement vector.
% H - Me