代码搜索结果
找到约 2,425 项符合
Measurement 的代码
obsup.m
function [x,P] = obsup[x,P,z,H,R]
%
% function [x,P] = obsup[x,P,z,H,R]
%
% Performs Kalman filter observational update of state vector, x
% and the associated covriance matrix of estimation unce
bierman.m
function [x,U,D] = bierman(z,R,H,xin,Uin,Din)
%
% Matlab implementation of the
% Bierman ``square root filtering without square roots''
%
% From the diskette included with
% M. S. Grewal, L. R.
potter.m
function [xout,Cout] = potter(z,R,H,xin,Cin)
%
% James H. Potter's square root filtering algorithm
% for the observational update of a Cholesky factor
% of the covariance matrix of state estimatio
ekf.m
function [x,P]=ekf(fstate,x,P,hmeas,z,Q,R)
% EKF Extended Kalman Filter for nonlinear dynamic systems
% [x, P] = ekf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P
% for nonlin
untitled2.m
n=3; %number of state
q=0.1; %std of process
r=0.1; %std of measurement
Q=q^2*eye(n); % covariance of process
R=r^2; % covariance of measurement
f=@(x)[x(2);x(3);0.05*x(1)*(x
pixelspeed.cpp
//-----------------------------------------------------------------------------------//
// Windows Graphics Programming: Win32 GDI and DirectDraw //
//
confirm2sj.m
k=3;
t=0.5;
a0=[1 1 1 1 1 1]';
p0=eye(6);
mes_total=6;
measurement=[1 2 3 4 5 6;1 2 3 4 5 6];
r=eye(2);
yz2=2.5;
lr_3d_kalman.m
% LR_3d_KALMAN.M calculate the log likelihood ratio using
% standard discrete-time Kalman filter for the following system:
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hfun.m
function [y] = hfun(x,t);
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS :
% DATE :
if
manual_dscqmmmeasurefrequency.html
DscQMMMeasureFrequency - Universal Driver Documentation