代码搜索结果
找到约 2,356 项符合
Measurement 的代码
bshfun.m
function [y] = bshfun(x,u,t);
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS : Nando de Fre
hfun.m
function [y] = hfun(x,t);
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS :
% DATE :
if
ukf_hfun.m
function [y] = ukf_hfun(x,u,n,t);
% PURPOSE : Measurement model function fpr UKF.
% INPUTS : - x: Hidden state
% : - u: control vector
% - n: Measurement noise
% - t
lgslam.m
% LGSLAM - Performs a filter update for a linear-Gaussian SLAM
% filter (using the unscented transformation to
% linearize nonlinear motion and measurement models).
%
% This fu
josephb.m
function [K,Pout] = josephb(z,R,H,P)
%
% Joseph "stabilized" Kalman filter measurement
% update as modified by Bierman.
%
T1 = sqrt(R);
T2 = H/T1;
T4 = P*T2';
T5 = T2*T4 + 1;
K = T4/T5;
T7
joseph.m
function [K,Pout] = joseph(z,R,H,P)
%
% P. D. Joseph's "stabilized" Kalman filter measurement
% update.
%
n = length(H);
zp = sqrt(1/R);
Hp = zp*H;
K = (Hp*P*Hp' + 1) \ P*Hp';
W = eye
josephdv.m
function [K,Pout] = josephdv(z,R,H,P)
%
% Joseph "stabilized" Kalman filter measurement
% update as implemented by De Vries.
%
T1 = P*H';
T2 = H*T1 + R;
K = T1/T2;
T3 = .5*K*T2 - T1;
T4 = T3
cov_e.m
function R=cov_w(obj,t);
% Returns the covariance matrix of the measurement noise, at time t.
%
% Syntax: (* = optional)
%
% R = cov_e(model, t);
%
% In arguments:
%
% 1. model
% Model objec
cov_e.m
function R=cov_w(obj,t);
% Returns the covariance matrix of the measurement noise, at time t.
%
% Syntax: (* = optional)
%
% R = cov_e(model, t);
%
% In arguments:
%
% 1. model
% Model objec
cov_e.m
function R=cov_w(obj,t);
% Returns the covariance matrix of the measurement noise, at time t.
%
% Syntax: (* = optional)
%
% R = cov_e(model, t);
%
% In arguments:
%
% 1. model
% Model objec