代码搜索结果
找到约 2,356 项符合
Measurement 的代码
cov_e.m
function R=cov_w(obj,t);
% Returns the covariance matrix of the measurement noise, at time t.
%
% Syntax: (* = optional)
%
% R = cov_e(model, t);
%
% In arguments:
%
% 1. model
% Model objec
cov_e.m
function R=cov_w(obj,t);
% Returns the covariance matrix of the measurement noise, at time t.
%
% Syntax: (* = optional)
%
% R = cov_e(model, t);
%
% In arguments:
%
% 1. model
% Model objec
cov_e.m
function R=cov_w(obj,t);
% Returns the covariance matrix of the measurement noise, at time t.
%
% Syntax: (* = optional)
%
% R = cov_e(model, t);
%
% In arguments:
%
% 1. model
% Model objec
ukf_bshfun.m
function [y] = ukf_bshfun(x,u,n,t);
% PURPOSE : Measurement model function for UKF
% INPUTS : - x: The evaluation point in the domain.
% : - u: exogenous inputs
% : - n: measureme
bshfun.m
function [y] = bshfun(x,u,t);
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS : Nando de Fre
hfun.m
function [y] = hfun(x,t);
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS :
% DATE :
if
ukf_hfun.m
function [y] = ukf_hfun(x,u,n,t);
% PURPOSE : Measurement model function fpr UKF.
% INPUTS : - x: Hidden state
% : - u: control vector
% - n: Measurement noise
% - t
k_update.m
function [x,P] = k_update(x,P,A,b,R)
% K_UPDATE Kalman update, one measurement per call
% Observation covariance R
%Kai Borre 11-24-96
%Copyright (c) 1997 by Kai Borre
%$Revision: 1.0
ex28 - temp measurement.bs2
' {$STAMP BS2}
' ==============================================================================
'
' File...... Ex28 - DS1620.BS2
' Purpose... Temperature measurement
' Author.... Parallax
' E-ma
add_observation_noise.m
function z= add_observation_noise(z,R, addnoise)
%function z= add_observation_noise(z,R, addnoise)
%
% Add random measurement noise. We assume R is diagonal.
if addnoise == 1
len= size(