代码搜索结果

找到约 2,916 项符合 Energy 的代码

cp0201_waveform.m

% % FUNCTION 2.5 : "cp0201_waveform" % % Generates the energy-normalized pulse waveform % % Special case of the second derivative Gaussian pulse: % SCHOLTZ'S MONOCYCLE % % ********************

cp0201_waveform.m

% % FUNCTION 2.5 : "cp0201_waveform" % % Generates the energy normalized pulse waveform % % Special case of the second derivative Gaussian pulse: % SCHOLTZ'S MONOCYCLE % % ********************

cp0201_waveform.m

% % FUNCTION 2.5 : "cp0201_waveform" % % Generates the energy normalized pulse waveform % % Special case of the second derivative Gaussian pulse: % SCHOLTZ'S MONOCYCLE % % ********************

tm.m

function [M,e,rho,Ebin] = TM(Eh,bins) % Transition matrix calculation method supplied with SA Tools. % Copyright (c) 2002, by Richard Frost and Frost Concepts. % See http://www.frostconcepts.com/so

cp0201_waveform.m

% % FUNCTION 2.5 : "cp0201_waveform" % % Generates the energy-normalized pulse waveform % % Special case of the second derivative Gaussian pulse: % SCHOLTZ'S MONOCYCLE % % ********************

cp0201_waveform.m

% % FUNCTION 2.5 : "cp0201_waveform" % % Generates the energy-normalized pulse waveform % % Special case of the second derivative Gaussian pulse: % SCHOLTZ'S MONOCYCLE % % ********************

createcb.c

/****************************************************************** iLBC Speech Coder ANSI-C Source Code createCB.c Copyright (C) The Internet Society (2004). All R

cp0201_waveform.m

% % FUNCTION 2.5 : "cp0201_waveform" % % Generates the energy-normalized pulse waveform % % Special case of the second derivative Gaussian pulse: % SCHOLTZ'S MONOCYCLE % % ********************

pktoav.c

/********************************************************************** Each of the companies; Lucent, Motorola, Nokia, and Qualcomm (hereinafter referred to individually as "Source" or collectivel

desa2.m

function [W,A]=desa2(x, dt) % The function DESA2 calculates frequency and amplitude using Teager Energy Operator (DESA-2 algorithm) % of the data x(n,m), where n is the number of points, and m is