代码搜索结果
找到约 2,276 项符合
Energy 的代码
margtfr.m
function [margt,margf,E]=margtfr(tfr,t,f)
%MARGTFR Marginals and energy of a time-frequency representation.
% [MARGT,MARGF,E]=MARGTFR(TFR,T,F) calculates the time and
% frequency marginals and the en
margtfr.m
function [margt,margf,E]=margtfr(tfr,t,f)
%MARGTFR Marginals and energy of a time-frequency representation.
% [MARGT,MARGF,E]=MARGTFR(TFR,T,F) calculates the time and
% frequency marginals and the en
sigmerge.m
function sig=sigmerge(x1,x2,ratio);
%SIGMERGE Add two signals with given energy ratio in dB.
% SIG=SIGMERGE(X1,X2,RATIO) adds two signals so that a given
% energy ratio expressed in deciBels is satisf
desa2.m
function [W,A]=desa2(x, dt)
% The function DESA2 calculates frequency and amplitude using Teager Energy Operator (DESA-2 algorithm)
% of the data x(n,m), where n is the number of points, and m is
desa1.m
function [W,A]=desa1(x, dt)
% The function DESA1 calculates frequency and amplitude using Teager Energy Operator (DESA-1 algorithm)
% for the data x(n,m), where n is the number of points, and m is
desa.m
function [W,A]=desa(x, dt)
% The function DESA calculates frequency and amplitude using Teager Energy Operator
% for the data x(n,m), where n is the number of points, and m is
% the number of
desa1m.m
function [W,A]=desa1m(x, dt)
% The function DESA1M calculates frequency and amplitude using Teager Energy Operator (DESA-1 algorithm)
% of the data x(n,m), where n is the number of points, and m
nspte.m
function [h,xs,w] = nspte(data,nyy,t0,t1)
% The function NSPTE calculates the spectrum using Teager Energy Operator
% applied to data(n,k), where n is the number of data points
% and k is the num
nspabte.m
function [h,xs,w] = nspabte(data,nyy,min_w,max_w,t0,t1)
% The function NSPABTE calculates the spectrum by applying the Teager Energy Operator
% to data(n,k), where n is the number of data points a
cp0201_waveform.m
%
% FUNCTION 2.5 : "cp0201_waveform"
%
% Generates the energy-normalized pulse waveform
%
% Special case of the second derivative Gaussian pulse:
% SCHOLTZ'S MONOCYCLE
%
% ********************