代码搜索结果
找到约 582,192 项符合
Cortex-M 的代码
gaussian_prob.m
function p = gaussian_prob(x, m, C, use_log)
% GAUSSIAN_PROB Evaluate a multivariate Gaussian density.
% p = gaussian_prob(X, m, C)
% p(i) = N(X(:,i), m, C) where C = covariance matrix and each COL
multinomial_sample.m
function Y = sample_cond_multinomial(X, M)
% SAMPLE_MULTINOMIAL Sample Y(i) ~ M(X(i), :)
% function Y = sample_multinomial(X, M)
%
% X(i) = i'th sample
% M(i,j) = P(Y=j | X=i) = noisy channel mod
sample_gaussian.m
function M = sample_gaussian(mu, Sigma, N)
% SAMPLE_GAUSSIAN Draw N random row vectors from a Gaussian distribution
% samples = sample_gaussian(mean, cov, N)
if nargin==2
N = 1;
end
% If Y
cwr_test.m
% Verify that my code gives the same results as the 1D example at
% http://www.media.mit.edu/physics/publications/books/nmm/files/cwm.m
seed = 0;
rand('state', seed);
randn('state', seed);
x =
standardize.m
function [S, mu, sigma2] = standardize(M, mu, sigma2)
% function S = standardize(M, mu, sigma2)
% Make each column of M be zero mean, std 1.
% Thus each row is scaled separately.
%
% If mu, sigma
standardize.m~
function [S, mu, sigma2] = standardize(M, mu, sigma2)
% function S = standardize(M, mu, sigma2)
% Make each column of M be zero mean, std 1.
% Thus each row is scaled separately.
%
% If mu, sigma
mixgauss_init.m
function [mu, Sigma, weights] = mixgauss_init(M, data, cov_type, method)
% MIXGAUSS_INIT Initial parameter estimates for a mixture of Gaussians
% function [mu, Sigma, weights] = mixgauss_init(M, dat
mixgauss_prob_test.m
function test_eval_pdf_cond_mixgauss()
%Q = 10; M = 100; d = 20; T = 500;
Q = 2; M = 3; d = 4; T = 5;
mu = rand(d,Q,M);
data = randn(d,T);
%mixmat = mk_stochastic(rand(Q,M));
mixmat = mk_sto
beta_sample.m
function r = betarnd(a,b,m,n);
%BETARND Random matrices from beta distribution.
% R = BETARND(A,B) returns a matrix of random numbers chosen
% from the beta distribution with parameters A an
matrix_t_pdf.m
function p = matrix_T_pdf(A, M, V, K, n)
% MATRIX_T_PDF Evaluate the density of a matrix under a Matrix-T distribution
% p = matrix_T_pdf(A, M, V, K, n)
% See "Bayesian Linear Regression", T. Min