代码搜索结果
找到约 33,766 项符合
Algorithm 的代码
weaklearn_train.m
function [i_star,theta_star,qdef_star,r_star]=WeakLearn_train(data,D)
% Implements the weak learner in the RankBoost paper.
%
%Y. Freund, R. Iyer, and R. Schapire, 揂n efficient boosting algorithm for
km.m
function [clusters] = km(X,N,centers)
% [clusters] = km(X,N,centers)
% [clusters] = km(X,N)
%
% Function for determining the clusters using K-means algorithm.
%
% Input parameters:
% -
aismain.m
function [] = AISMAIN
%
% Function AISMAIN Demonstration
% Runs a Demo for the following immune tools:
% 1) CLONALG (Basic Clonal Selection Algorithm)-----CLONALG.doc
%
%
% Secondary Functions:
opf_slvr.m
function code = opf_slvr(alg)
%OPF_SLVR Which OPF solver is used by alg.
% code = opf_slvr(alg) returns a solver code given an algorithm code.
% The codes are:
% 0 - 'constr' from Optimiz
sgalab_contents.m
% /*M-FILE SCRIPT SGALAB_contents MMM SGALAB */ %
% % /*==================================================================================================
% Simple Genetic Algorithm Laboratory Tool
kmeanlbg.m
function [x,esq,j] = kmeanlbg(d,k)
%KMEANLBG Vector quantisation using the Linde-Buzo-Gray algorithm [X,ESQ,J]=(D,K)
%
%Inputs:
% D contains data vectors (one per row)
% K is number of centres re
readme
Backpropagation learning:
bp_innerloop The backpropagation learning algorithm, used
in each of the demos below.
XOR Demo:
bpxor.m Learning the XOR function.
XorPats.m Input patterns for
contents.m
% Genetic Optimization Toolbox
%
% Main interface
% ga.m The Genetic Algorithm
% initializega.m Initialization function for float and binary
% repres
_str2pat.c
/* File : _str2pat.c
Author : Richard A. O'Keefe.
Updated: 2 June 1984
Defines: _pat_lim, _pat_vec[], _str2pat()
Searching in this package is done by an algorithm due to R.
lms.m
function [h,y] = lms(x,d,delta,N)
% LMS Algorithm for Coefficient Adjustment
% ----------------------------------------
% [h,y] = lms(x,d,delta,N)
% h = estimated FIR filter
% y = output