代码搜索结果
找到约 33,766 项符合
Algorithm 的代码
compmap2.m
% Run the composite mapping algorithm to make a positive sequence
% Copyright 1999 by Todd K. Moon
% Set up the initial vector
N = 512; q = 10; t = (0:q)';
h = 0.54 + 0.46*cos(pi*t/q);
em1.m
% Illustration of example em algorithm computations
%
% Copyright 1999 by Todd K. Moon
% Initialize the data
x1 = 25; x2 = 38; x3=37;
y1 = x1+x2; y2 = x3;
maxsteps = 10;
p = 0; % in
convnorm.m
function d = convnorm(branch,input,state,nextstate)
%
% Compute the Hamming distance between the branchweights and the input
% This function may be feval'ed for use with the Viterbi algorithm
% (s
greedyperm2.m
function P = greedyperm2(x,z)
%
% Using a greedy algorithm, determine a permutation P such that Px=z
% as closely as possible.
% This algorithm is more complex than greedyperm
%
% function P =
greedyperm.m
function P = greedyperm(x,z)
%
% Using a greedy algorithm, determine a permutation P such that Px=z
% as closely as possible.
%
% function P = greedyperm(x,z)
% Copyright 1999 by Todd K. Moon
gcdint1.m
function g = gcdint1(b,c)
%
% Compute (only) the GCD (a,b) using the Euclidean algorithm
%
% function g = gcdint1(b,c)
%
% b,c = integers
%
% g = GCD(b,c)
% Copyright 1999 by Todd K. Moon
vitnop.m
function d = vitnop(branch,input)
%
% Compute the norm of the difference between inputs
% This function may be feval'ed for use with the Viterbi algorithm
% In this case, the norm is simply taken
conjgradtest.m
% Test the conjugate gradient algorithm
% Copyright 1999 by Todd K. Moon
hold off
; rosenbrock;
hold on
xoff = -.3;
x = [-1;-1];
[xn,X] = conjgrad2(x,'rosengrad','rosenhess')
[n,k] = size
testfordyn.m
% Test the forward dynamic programming algorithm
% Copyright 1999 by Todd K. Moon
G{1} = [2,3,4,5]; G{2} = [6,7]; G{3} = [7,8]; G{4} = [6,8];
G{5} = 8; G{6} = [9,10,11]; G{7} = [10,11,12];
arttest.m
% test the ART algorithm
% Copyright 1999 by Todd K. Moon
A = [1 2 3;
-4 -2 -5;
2 7 10;
4 3 -2];
xtrue = [1;2;3];
b = A*xtrue;
lastx = [1;1;1];
e = [];
for i=1:10
x =