⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 main.c

📁 STM32 库文件
💻 C
字号:
/**
  ******************************************************************************
  * @file SPI/FullDuplex_SoftNSS/main.c 
  * @author  MCD Application Team
  * @version  V3.0.0
  * @date  04/06/2009
  * @brief  Main program body
  ******************************************************************************
  * @copy
  *
  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
  *
  * <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
  */ 

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"

/** @addtogroup StdPeriph_Examples
  * @{
  */

/** @addtogroup SPI_FullDuplex_SoftNSS
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
typedef enum {FAILED = 0, PASSED = !FAILED} TestStatus;

/* Private define ------------------------------------------------------------*/
#define BufferSize 32

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
SPI_InitTypeDef   SPI_InitStructure;
uint8_t SPI1_Buffer_Tx[BufferSize] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
                                 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12,
                                 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B,
                                 0x1C, 0x1D, 0x1E, 0x1F, 0x20};
uint8_t SPI2_Buffer_Tx[BufferSize] = {0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
                                 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61, 0x62,
                                 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B,
                                 0x6C, 0x6D, 0x6E, 0x6F, 0x70};
uint8_t SPI1_Buffer_Rx[BufferSize], SPI2_Buffer_Rx[BufferSize];
uint8_t TxIdx = 0, RxIdx = 0, k = 0;
volatile TestStatus TransferStatus1 = FAILED, TransferStatus2 = FAILED;
volatile TestStatus TransferStatus3 = FAILED, TransferStatus4 = FAILED;
ErrorStatus HSEStartUpStatus;

/* Private functions ---------------------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength);

/**
  * @brief  Main program
  * @param  None
  * @retval : None
  */
int main(void)
{
  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  /* 1st phase: SPI1 Master and SPI2 Slave */
  /* SPI1 Config -------------------------------------------------------------*/
  SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
  SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
  SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
  SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
  SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
  SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
  SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_LSB;
  SPI_InitStructure.SPI_CRCPolynomial = 7;
  SPI_Init(SPI1, &SPI_InitStructure);

  /* SPI2 Config -------------------------------------------------------------*/
  SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;
  SPI_Init(SPI2, &SPI_InitStructure);

  /* Enable SPI1 */
  SPI_Cmd(SPI1, ENABLE);
  /* Enable SPI2 */
  SPI_Cmd(SPI2, ENABLE);

  /* Transfer procedure */
  while (TxIdx < BufferSize)
  {
    /* Wait for SPI1 Tx buffer empty */
    while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
    /* Send SPI2 data */
    SPI_I2S_SendData(SPI2, SPI2_Buffer_Tx[TxIdx]);
    /* Send SPI1 data */
    SPI_I2S_SendData(SPI1, SPI1_Buffer_Tx[TxIdx++]);
    /* Wait for SPI2 data reception */
    while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
    /* Read SPI2 received data */
    SPI2_Buffer_Rx[RxIdx] = SPI_I2S_ReceiveData(SPI2);
    /* Wait for SPI1 data reception */
    while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
    /* Read SPI1 received data */
    SPI1_Buffer_Rx[RxIdx++] = SPI_I2S_ReceiveData(SPI1);
  }

  /* Check the corectness of written dada */
  TransferStatus1 = Buffercmp(SPI2_Buffer_Rx, SPI1_Buffer_Tx, BufferSize);
  TransferStatus2 = Buffercmp(SPI1_Buffer_Rx, SPI2_Buffer_Tx, BufferSize);
  /* TransferStatus1, TransferStatus2 = PASSED, if the transmitted and received data
     are equal */
  /* TransferStatus1, TransferStatus2 = FAILED, if the transmitted and received data
     are different */

  /* 2nd phase: SPI1 Slave and SPI2 Master */
  /* SPI1 Re-configuration ---------------------------------------------------*/
  SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;
  SPI_Init(SPI1, &SPI_InitStructure);

  /* SPI2 Re-configuration ---------------------------------------------------*/
  SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  SPI_Init(SPI2, &SPI_InitStructure);

  /* Reset TxIdx, RxIdx indexes and receive tables values */
  TxIdx = 0;
  RxIdx = 0;
  for (k = 0; k < BufferSize; k++)  SPI2_Buffer_Rx[k] = 0;
  for (k = 0; k < BufferSize; k++)  SPI1_Buffer_Rx[k] = 0;

  /* Transfer procedure */
  while (TxIdx < BufferSize)
  {
    /* Wait for SPI2 Tx buffer empty */
    while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
    /* Send SPI1 data */
    SPI_I2S_SendData(SPI1, SPI1_Buffer_Tx[TxIdx]);
    /* Send SPI2 data */
    SPI_I2S_SendData(SPI2, SPI2_Buffer_Tx[TxIdx++]);
    /* Wait for SPI1 data reception */
    while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
    /* Read SPI1 received data */
    SPI1_Buffer_Rx[RxIdx] = SPI_I2S_ReceiveData(SPI1);
    /* Wait for SPI2 data reception */
    while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
    /* Read SPI2 received data */
    SPI2_Buffer_Rx[RxIdx++] = SPI_I2S_ReceiveData(SPI2);
  }

  /* Check the corectness of written dada */
  TransferStatus3 = Buffercmp(SPI2_Buffer_Rx, SPI1_Buffer_Tx, BufferSize);
  TransferStatus4 = Buffercmp(SPI1_Buffer_Rx, SPI2_Buffer_Tx, BufferSize);
  /* TransferStatus3, TransferStatus4 = PASSED, if the transmitted and received data
     are equal */
  /* TransferStatus3, TransferStatus4 = FAILED, if the transmitted and received data
     are different */

  while (1)
  {}
}

/**
  * @brief  Configures the different system clocks.
  * @param  None
  * @retval : None
  */
void RCC_Configuration(void)
{
  /* RCC system reset(for debug purpose) */
  RCC_DeInit();

  /* Enable HSE */
  RCC_HSEConfig(RCC_HSE_ON);

  /* Wait till HSE is ready */
  HSEStartUpStatus = RCC_WaitForHSEStartUp();

  if (HSEStartUpStatus == SUCCESS)
  {
    /* Enable Prefetch Buffer */
    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

    /* Flash 2 wait state */
    FLASH_SetLatency(FLASH_Latency_2);

    /* HCLK = SYSCLK */
    RCC_HCLKConfig(RCC_SYSCLK_Div1);

    /* PCLK2 = HCLK/2 */
    RCC_PCLK2Config(RCC_HCLK_Div2);

    /* PCLK1 = HCLK/2 */
    RCC_PCLK1Config(RCC_HCLK_Div2);

    /* PLLCLK = 8MHz * 9 = 72 MHz */
    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

    /* Enable PLL */
    RCC_PLLCmd(ENABLE);

    /* Wait till PLL is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
    {}

    /* Select PLL as system clock source */
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

    /* Wait till PLL is used as system clock source */
    while (RCC_GetSYSCLKSource() != 0x08)
    {}
  }

  /* Enable peripheral clocks --------------------------------------------------*/
  /* GPIOA, GPIOB and SPI1 clock enable */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
                         RCC_APB2Periph_SPI1, ENABLE);
  /* SPI2 Periph clock enable */
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
}

/**
  * @brief  Configures the different GPIO ports.
  * @param  None
  * @retval : None
  */
void GPIO_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;

  /* Configure SPI1 pins: SCK, MISO and MOSI ---------------------------------*/
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_Init(GPIOA, &GPIO_InitStructure);

  /* Configure SPI2 pins: SCK, MISO and MOSI ---------------------------------*/
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
  GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/**
  * @brief  Compares two buffers.
  * @param pBuffer1, pBuffer2: buffers to be compared.
  * @param BufferLength: buffer's length
  * @retval : PASSED: pBuffer1 identical to pBuffer2
  *   FAILED: pBuffer1 differs from pBuffer2
  */
TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength)
{
  while (BufferLength--)
  {
    if (*pBuffer1 != *pBuffer2)
    {
      return FAILED;
    }

    pBuffer1++;
    pBuffer2++;
  }

  return PASSED;
}

#ifdef  USE_FULL_ASSERT

/**
  * @brief  Reports the name of the source file and the source line number
  *   where the assert_param error has occurred.
  * @param file: pointer to the source file name
  * @param line: assert_param error line source number
  * @retval : None
  */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  /* Infinite loop */
  while (1)
  {}
}
#endif
/**
  * @}
  */ 

/**
  * @}
  */ 

/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -