⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mbprediction.c

📁 mpeg4视频解码源码.rar
💻 C
字号:
/***************************************************************************** * *  XVID MPEG-4 VIDEO CODEC *  - Prediction module - * *  Copyright (C) 2001-2003 Michael Militzer <isibaar@xvid.org> *                2001-2003 Peter Ross <pross@xvid.org> * *  This program is free software ; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation ; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY ; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program ; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA * * $Id$ * ****************************************************************************/#include <stdlib.h>#include "../global.h"#include "../encoder.h"#include "mbprediction.h"#include "../utils/mbfunctions.h"#include "../bitstream/cbp.h"#include "../bitstream/mbcoding.h"#include "../bitstream/zigzag.h"static int __inlinerescale(int predict_quant,		int current_quant,		int coeff){	return (coeff != 0) ? DIV_DIV((coeff) * (predict_quant),								  (current_quant)) : 0;}static const int16_t default_acdc_values[15] = {	1024,	0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0};/*	get dc/ac prediction direction for a single block and place	predictor values into MB->pred_values[j][..]*/voidpredict_acdc(MACROBLOCK * pMBs,			 uint32_t x,			 uint32_t y,			 uint32_t mb_width,			 uint32_t block,			 int16_t qcoeff[64],			 uint32_t current_quant,			 int32_t iDcScaler,			 int16_t predictors[8],			 const int bound){	const int mbpos = (y * mb_width) + x;	int16_t *left, *top, *diag, *current;	int32_t left_quant = current_quant;	int32_t top_quant = current_quant;	const int16_t *pLeft = default_acdc_values;	const int16_t *pTop = default_acdc_values;	const int16_t *pDiag = default_acdc_values;	uint32_t index = x + y * mb_width;	/* current macroblock */	int *acpred_direction = &pMBs[index].acpred_directions[block];	uint32_t i;	left = top = diag = current = 0;	/* grab left,top and diag macroblocks */	/* left macroblock */	if (x && mbpos >= bound + 1  &&		(pMBs[index - 1].mode == MODE_INTRA ||		 pMBs[index - 1].mode == MODE_INTRA_Q)) {		left = pMBs[index - 1].pred_values[0];		left_quant = pMBs[index - 1].quant;	}	/* top macroblock */	if (mbpos >= bound + (int)mb_width &&		(pMBs[index - mb_width].mode == MODE_INTRA ||		 pMBs[index - mb_width].mode == MODE_INTRA_Q)) {		top = pMBs[index - mb_width].pred_values[0];		top_quant = pMBs[index - mb_width].quant;	}	/* diag macroblock */	if (x && mbpos >= bound + (int)mb_width + 1 &&		(pMBs[index - 1 - mb_width].mode == MODE_INTRA ||		 pMBs[index - 1 - mb_width].mode == MODE_INTRA_Q)) {		diag = pMBs[index - 1 - mb_width].pred_values[0];	}	current = pMBs[index].pred_values[0];	/* now grab pLeft, pTop, pDiag _blocks_ */	switch (block) {	case 0:		if (left)			pLeft = left + MBPRED_SIZE;		if (top)			pTop = top + (MBPRED_SIZE << 1);		if (diag)			pDiag = diag + 3 * MBPRED_SIZE;		break;	case 1:		pLeft = current;		left_quant = current_quant;		if (top) {			pTop = top + 3 * MBPRED_SIZE;			pDiag = top + (MBPRED_SIZE << 1);		}		break;	case 2:		if (left) {			pLeft = left + 3 * MBPRED_SIZE;			pDiag = left + MBPRED_SIZE;		}		pTop = current;		top_quant = current_quant;		break;	case 3:		pLeft = current + (MBPRED_SIZE << 1);		left_quant = current_quant;		pTop = current + MBPRED_SIZE;		top_quant = current_quant;		pDiag = current;		break;	case 4:		if (left)			pLeft = left + (MBPRED_SIZE << 2);		if (top)			pTop = top + (MBPRED_SIZE << 2);		if (diag)			pDiag = diag + (MBPRED_SIZE << 2);		break;	case 5:		if (left)			pLeft = left + 5 * MBPRED_SIZE;		if (top)			pTop = top + 5 * MBPRED_SIZE;		if (diag)			pDiag = diag + 5 * MBPRED_SIZE;		break;	}	/* determine ac prediction direction & ac/dc predictor place rescaled ac/dc	 * predictions into predictors[] for later use */	if (abs(pLeft[0] - pDiag[0]) < abs(pDiag[0] - pTop[0])) {		*acpred_direction = 1;	/* vertical */		predictors[0] = DIV_DIV(pTop[0], iDcScaler);		for (i = 1; i < 8; i++) {			predictors[i] = rescale(top_quant, current_quant, pTop[i]);		}	} else {		*acpred_direction = 2;	/* horizontal */		predictors[0] = DIV_DIV(pLeft[0], iDcScaler);		for (i = 1; i < 8; i++) {			predictors[i] = rescale(left_quant, current_quant, pLeft[i + 7]);		}	}}/* decoder: add predictors to dct_codes[] and   store current coeffs to pred_values[] for future prediction*//* Up to this version, no DC clipping was performed, so we try to be backward * compatible to avoid artifacts */#define BS_VERSION_BUGGY_DC_CLIPPING 34voidadd_acdc(MACROBLOCK * pMB,		 uint32_t block,		 int16_t dct_codes[64],		 uint32_t iDcScaler,		 int16_t predictors[8],		 const int bsversion){	uint8_t acpred_direction = pMB->acpred_directions[block];	int16_t *pCurrent = pMB->pred_values[block];	uint32_t i;	DPRINTF(XVID_DEBUG_COEFF,"predictor[0] %i\n", predictors[0]);	dct_codes[0] += predictors[0];	/* dc prediction */	pCurrent[0] = dct_codes[0]*iDcScaler;	if (!bsversion || bsversion > BS_VERSION_BUGGY_DC_CLIPPING) {		pCurrent[0] = CLIP(pCurrent[0], -2048, 2047);	}	if (acpred_direction == 1) {		for (i = 1; i < 8; i++) {			int level = dct_codes[i] + predictors[i];			DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i, predictors[i]);			dct_codes[i] = level;			pCurrent[i] = level;			pCurrent[i + 7] = dct_codes[i * 8];		}	} else if (acpred_direction == 2) {		for (i = 1; i < 8; i++) {			int level = dct_codes[i * 8] + predictors[i];			DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i*8, predictors[i]);			dct_codes[i * 8] = level;			pCurrent[i + 7] = level;			pCurrent[i] = dct_codes[i];		}	} else {		for (i = 1; i < 8; i++) {			pCurrent[i] = dct_codes[i];			pCurrent[i + 7] = dct_codes[i * 8];		}	}}/***************************************************************************** ****************************************************************************//* encoder: subtract predictors from qcoeff[] and calculate S1/S2returns sum of coeefficients *saved* if prediction is enabledS1 = sum of all (qcoeff - prediction)S2 = sum of all qcoeff*/intcalc_acdc_coeff(MACROBLOCK * pMB,		  uint32_t block,		  int16_t qcoeff[64],		  uint32_t iDcScaler,		  int16_t predictors[8]){	int16_t *pCurrent = pMB->pred_values[block];	uint32_t i;	int S1 = 0, S2 = 0;	/* store current coeffs to pred_values[] for future prediction */	pCurrent[0] = qcoeff[0] * iDcScaler;	pCurrent[0] = CLIP(pCurrent[0], -2048, 2047);	for (i = 1; i < 8; i++) {		pCurrent[i] = qcoeff[i];		pCurrent[i + 7] = qcoeff[i * 8];	}	/* subtract predictors and store back in predictors[] */	qcoeff[0] = qcoeff[0] - predictors[0];	if (pMB->acpred_directions[block] == 1) {		for (i = 1; i < 8; i++) {			int16_t level;			level = qcoeff[i];			S2 += abs(level);			level -= predictors[i];			S1 += abs(level);			predictors[i] = level;		}	} else						/* acpred_direction == 2 */	{		for (i = 1; i < 8; i++) {			int16_t level;			level = qcoeff[i * 8];			S2 += abs(level);			level -= predictors[i];			S1 += abs(level);			predictors[i] = level;		}	}	return S2 - S1;}/* returns the bits *saved* if prediction is enabled */intcalc_acdc_bits(MACROBLOCK * pMB,		  uint32_t block,		  int16_t qcoeff[64],		  uint32_t iDcScaler,		  int16_t predictors[8]){	const int direction = pMB->acpred_directions[block];	int16_t *pCurrent = pMB->pred_values[block];	int16_t tmp[8];	unsigned int i;	int Z1, Z2;	/* store current coeffs to pred_values[] for future prediction */	pCurrent[0] = qcoeff[0] * iDcScaler;	pCurrent[0] = CLIP(pCurrent[0], -2048, 2047);	for (i = 1; i < 8; i++) {		pCurrent[i] = qcoeff[i];		pCurrent[i + 7] = qcoeff[i * 8];	}	/* dc prediction */	qcoeff[0] = qcoeff[0] - predictors[0];	/* calc cost before ac prediction */	Z2 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[0]);	/* apply ac prediction & calc cost*/	if (direction == 1) {		for (i = 1; i < 8; i++) {			tmp[i] = qcoeff[i];			qcoeff[i] -= predictors[i];			predictors[i] = qcoeff[i];		}	}else{						/* acpred_direction == 2 */		for (i = 1; i < 8; i++) {			tmp[i] = qcoeff[i*8];			qcoeff[i*8] -= predictors[i];			predictors[i] = qcoeff[i*8];		}	}	Z1 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[direction]);	/* undo prediction */	if (direction == 1) {		for (i = 1; i < 8; i++)			qcoeff[i] = tmp[i];	}else{						/* acpred_direction == 2 */		for (i = 1; i < 8; i++)			qcoeff[i*8] = tmp[i];	}	return Z2-Z1;}/* apply predictors[] to qcoeff */voidapply_acdc(MACROBLOCK * pMB,		   uint32_t block,		   int16_t qcoeff[64],		   int16_t predictors[8]){	unsigned int i;	if (pMB->acpred_directions[block] == 1) {		for (i = 1; i < 8; i++)			qcoeff[i] = predictors[i];	} else {		for (i = 1; i < 8; i++)			qcoeff[i * 8] = predictors[i];	}}voidMBPrediction(FRAMEINFO * frame,			 uint32_t x,			 uint32_t y,			 uint32_t mb_width,			 int16_t qcoeff[6 * 64]){	int32_t j;	int32_t iDcScaler, iQuant;	int S = 0;	int16_t predictors[6][8];	MACROBLOCK *pMB = &frame->mbs[x + y * mb_width];    iQuant = pMB->quant;	if ((pMB->mode == MODE_INTRA) || (pMB->mode == MODE_INTRA_Q)) {		for (j = 0; j < 6; j++) {			iDcScaler = get_dc_scaler(iQuant, j<4);			predict_acdc(frame->mbs, x, y, mb_width, j, &qcoeff[j * 64],						 iQuant, iDcScaler, predictors[j], 0);			if ((frame->vop_flags & XVID_VOP_HQACPRED))				S += calc_acdc_bits(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]);			else				S += calc_acdc_coeff(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]);		}		if (S<=0) {				/* dont predict */			for (j = 0; j < 6; j++)				pMB->acpred_directions[j] = 0;		}else{			for (j = 0; j < 6; j++)				apply_acdc(pMB, j, &qcoeff[j * 64], predictors[j]);		}		pMB->cbp = calc_cbp(qcoeff);	}}static const VECTOR zeroMV = { 0, 0 };VECTORget_pmv2(const MACROBLOCK * const mbs,		const int mb_width,		const int bound,		const int x,		const int y,		const int block){	int lx, ly, lz;		/* left */	int tx, ty, tz;		/* top */	int rx, ry, rz;		/* top-right */	int lpos, tpos, rpos;	int num_cand = 0, last_cand = 1;	VECTOR pmv[4];	/* left neighbour, top neighbour, top-right neighbour */	switch (block) {	case 0:		lx = x - 1;	ly = y;		lz = 1;		tx = x;		ty = y - 1;	tz = 2;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 1:		lx = x;		ly = y;		lz = 0;		tx = x;		ty = y - 1;	tz = 3;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 2:		lx = x - 1;	ly = y;		lz = 3;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;		break;	default:		lx = x;		ly = y;		lz = 2;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;	}	lpos = lx + ly * mb_width;	rpos = rx + ry * mb_width;	tpos = tx + ty * mb_width;	if (lpos >= bound && lx >= 0) {		num_cand++;		pmv[1] = mbs[lpos].mvs[lz];	} else pmv[1] = zeroMV;	if (tpos >= bound) {		num_cand++;		last_cand = 2;		pmv[2] = mbs[tpos].mvs[tz];	} else pmv[2] = zeroMV;	if (rpos >= bound && rx < mb_width) {		num_cand++;		last_cand = 3;		pmv[3] = mbs[rpos].mvs[rz];	} else pmv[3] = zeroMV;	/* If there're more than one candidate, we return the median vector */	if (num_cand > 1) {		/* set median */		pmv[0].x =			MIN(MAX(pmv[1].x, pmv[2].x),				MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x)));		pmv[0].y =			MIN(MAX(pmv[1].y, pmv[2].y),				MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y)));		return pmv[0];	}	return pmv[last_cand];	/* no point calculating median mv */}VECTORget_qpmv2(const MACROBLOCK * const mbs,		const int mb_width,		const int bound,		const int x,		const int y,		const int block){	int lx, ly, lz;		/* left */	int tx, ty, tz;		/* top */	int rx, ry, rz;		/* top-right */	int lpos, tpos, rpos;	int num_cand = 0, last_cand = 1;	VECTOR pmv[4];	/* left neighbour, top neighbour, top-right neighbour */	switch (block) {	case 0:		lx = x - 1;	ly = y;		lz = 1;		tx = x;		ty = y - 1;	tz = 2;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 1:		lx = x;		ly = y;		lz = 0;		tx = x;		ty = y - 1;	tz = 3;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 2:		lx = x - 1;	ly = y;		lz = 3;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;		break;	default:		lx = x;		ly = y;		lz = 2;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;	}	lpos = lx + ly * mb_width;	rpos = rx + ry * mb_width;	tpos = tx + ty * mb_width;	if (lpos >= bound && lx >= 0) {		num_cand++;		pmv[1] = mbs[lpos].qmvs[lz];	} else pmv[1] = zeroMV;	if (tpos >= bound) {		num_cand++;		last_cand = 2;		pmv[2] = mbs[tpos].qmvs[tz];	} else pmv[2] = zeroMV;	if (rpos >= bound && rx < mb_width) {		num_cand++;		last_cand = 3;		pmv[3] = mbs[rpos].qmvs[rz];	} else pmv[3] = zeroMV;	/* If there're more than one candidate, we return the median vector */	if (num_cand > 1) {		/* set median */		pmv[0].x =			MIN(MAX(pmv[1].x, pmv[2].x),				MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x)));		pmv[0].y =			MIN(MAX(pmv[1].y, pmv[2].y),				MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y)));		return pmv[0];	}	return pmv[last_cand];	/* no point calculating median mv */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -