⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 estimation_bvop.c

📁 TMS320C6713Xvid视频压缩算法源代码.rar
💻 C
📖 第 1 页 / 共 3 页
字号:
/***************************************************************************** * *  XVID MPEG-4 VIDEO CODEC *  - Motion Estimation for B-VOPs  - * *  Copyright(C) 2002 Christoph Lampert <gruel@web.de> *               2002 Michael Militzer <michael@xvid.org> *               2002-2003 Radoslaw Czyz <xvid@syskin.cjb.net> * *  This program is free software ; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation ; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY ; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program ; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA * * $Id$ * ****************************************************************************/#include <assert.h>#include <stdio.h>#include <stdlib.h>#include <string.h>	/* memcpy */#include "../encoder.h"#include "../global.h"#include "../image/interpolate8x8.h"#include "estimation.h"#include "motion.h"#include "sad.h"#include "motion_inlines.h"static int32_tChromaSAD2(const int fx, const int fy, const int bx, const int by,			SearchData * const data){	int sad;	const uint32_t stride = data->iEdgedWidth/2;	uint8_t *f_refu, *f_refv, *b_refu, *b_refv;	const INTERPOLATE8X8_PTR interpolate8x8_halfpel[] = {		NULL,		interpolate8x8_halfpel_v,		interpolate8x8_halfpel_h,		interpolate8x8_halfpel_hv	};	int offset = (fx>>1) + (fy>>1)*stride;	int filter = ((fx & 1) << 1) | (fy & 1);	if (filter != 0) {		f_refu = data->RefQ;		f_refv = data->RefQ + 8;		interpolate8x8_halfpel[filter](f_refu, data->RefP[4] + offset, stride, data->rounding);		interpolate8x8_halfpel[filter](f_refv, data->RefP[5] + offset, stride, data->rounding);	} else {		f_refu = (uint8_t*)data->RefP[4] + offset;		f_refv = (uint8_t*)data->RefP[5] + offset;	}	offset = (bx>>1) + (by>>1)*stride;	filter = ((bx & 1) << 1) | (by & 1);	if (filter != 0) {		b_refu = data->RefQ + 16;		b_refv = data->RefQ + 24;		interpolate8x8_halfpel[filter](b_refu, data->b_RefP[4] + offset, stride, data->rounding);		interpolate8x8_halfpel[filter](b_refv, data->b_RefP[5] + offset, stride, data->rounding);	} else {		b_refu = (uint8_t*)data->b_RefP[4] + offset;		b_refv = (uint8_t*)data->b_RefP[5] + offset;	}	sad = sad8bi(data->CurU, b_refu, f_refu, stride);	sad += sad8bi(data->CurV, b_refv, f_refv, stride);	return sad;}static voidCheckCandidateInt(const int x, const int y, SearchData * const data, const unsigned int Direction){	int32_t sad, xf, yf, xb, yb, xcf, ycf, xcb, ycb;	uint32_t t;		const uint8_t *ReferenceF, *ReferenceB;	VECTOR *current;	if ((x > data->max_dx) || (x < data->min_dx) ||		(y > data->max_dy) || (y < data->min_dy))		return;	if (Direction == 1) { /* x and y mean forward vector */		VECTOR backward = data->qpel_precision ? data->currentQMV[1] : data->currentMV[1];		xb = backward.x;		yb = backward.y;		xf = x; yf = y;	} else { /* x and y mean backward vector */		VECTOR forward = data->qpel_precision ? data->currentQMV[0] : data->currentMV[0];		xf = forward.x;		yf = forward.y;		xb = x; yb = y;	}		if (!data->qpel_precision) {		ReferenceF = GetReference(xf, yf, data);		ReferenceB = GetReferenceB(xb, yb, 1, data);		current = data->currentMV + Direction - 1;		xcf = xf; ycf = yf;		xcb = xb; ycb = yb;	} else {		ReferenceF = xvid_me_interpolate16x16qpel(xf, yf, 0, data);		current = data->currentQMV + Direction - 1;		ReferenceB = xvid_me_interpolate16x16qpel(xb, yb, 1, data);		xcf = xf/2; ycf = yf/2;		xcb = xb/2; ycb = yb/2;	}	t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0)		 + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0);	sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth);	sad += (data->lambda16 * t * sad)>>10;	if (data->chroma && sad < *data->iMinSAD)		sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3],							(ycf >> 1) + roundtab_79[ycf & 0x3],							(xcb >> 1) + roundtab_79[xcb & 0x3],							(ycb >> 1) + roundtab_79[ycb & 0x3], data);	if (sad < *(data->iMinSAD)) {		*data->iMinSAD = sad;		current->x = x; current->y = y;		data->dir = Direction;	}}static voidCheckCandidateInt_qpel(const int x, const int y, SearchData * const data, const unsigned int Direction){	int32_t sad, xf, yf, xb, yb, xcf, ycf, xcb, ycb;	uint32_t t;		const uint8_t *ReferenceF, *ReferenceB;	VECTOR *current;	if ((x > data->max_dx) || (x < data->min_dx) ||		(y > data->max_dy) || (y < data->min_dy))		return;	if (Direction == 1) { /* x and y mean forward vector */		VECTOR backward = data->qpel_precision ? data->currentQMV[1] : data->currentMV[1];		xb = backward.x;		yb = backward.y;		xf = x; yf = y;	} else { /* x and y mean backward vector */		VECTOR forward = data->qpel_precision ? data->currentQMV[0] : data->currentMV[0];		xf = forward.x;		yf = forward.y;		xb = x; yb = y;	}		ReferenceF = xvid_me_interpolate16x16qpel(xf, yf, 0, data);	current = data->currentQMV + Direction - 1;	ReferenceB = xvid_me_interpolate16x16qpel(xb, yb, 1, data);	xcf = xf/2; ycf = yf/2;	xcb = xb/2; ycb = yb/2;	t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0)		 + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0);	sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth);	sad += (data->lambda16 * t * sad)>>10;	if (data->chroma && sad < *data->iMinSAD)		sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3],							(ycf >> 1) + roundtab_79[ycf & 0x3],							(xcb >> 1) + roundtab_79[xcb & 0x3],							(ycb >> 1) + roundtab_79[ycb & 0x3], data);	if (sad < *(data->iMinSAD)) {		*data->iMinSAD = sad;		current->x = x; current->y = y;		data->dir = Direction;	}	if (sad < *(data->iMinSAD)) {		data->iMinSAD2 = *(data->iMinSAD);		data->currentQMV2.x = current->x;		data->currentQMV2.y = current->y;		*data->iMinSAD = sad;		current->x = x; current->y = y;	} else if (sad < data->iMinSAD2) {		data->iMinSAD2 = sad;		data->currentQMV2.x = x; data->currentQMV2.y = y;	}}static voidCheckCandidateDirect(const int x, const int y, SearchData * const data, const unsigned int Direction){	int32_t sad = 0, xcf = 0, ycf = 0, xcb = 0, ycb = 0;	uint32_t k;	const uint8_t *ReferenceF;	const uint8_t *ReferenceB;	VECTOR mvs, b_mvs;	if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return;	for (k = 0; k < 4; k++) {		mvs.x = data->directmvF[k].x + x;		b_mvs.x = ((x == 0) ?			data->directmvB[k].x			: mvs.x - data->referencemv[k].x);		mvs.y = data->directmvF[k].y + y;		b_mvs.y = ((y == 0) ?			data->directmvB[k].y			: mvs.y - data->referencemv[k].y);		if ((mvs.x > data->max_dx)   || (mvs.x < data->min_dx)   ||			(mvs.y > data->max_dy)   || (mvs.y < data->min_dy)   ||			(b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) ||			(b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) )			return;		if (data->qpel) {			xcf += mvs.x/2; ycf += mvs.y/2;			xcb += b_mvs.x/2; ycb += b_mvs.y/2;		} else {			xcf += mvs.x; ycf += mvs.y;			xcb += b_mvs.x; ycb += b_mvs.y;			mvs.x *= 2; mvs.y *= 2; /* we move to qpel precision anyway */			b_mvs.x *= 2; b_mvs.y *= 2;		}		ReferenceF = xvid_me_interpolate8x8qpel(mvs.x, mvs.y, k, 0, data);		ReferenceB = xvid_me_interpolate8x8qpel(b_mvs.x, b_mvs.y, k, 1, data);		sad += sad8bi(data->Cur + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth),						ReferenceF, ReferenceB, data->iEdgedWidth);		if (sad > *(data->iMinSAD)) return;	}	sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10;	if (data->chroma && sad < *data->iMinSAD)		sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf],							(ycf >> 3) + roundtab_76[ycf & 0xf],							(xcb >> 3) + roundtab_76[xcb & 0xf],							(ycb >> 3) + roundtab_76[ycb & 0xf], data);	if (sad < *(data->iMinSAD)) {		data->iMinSAD[0] = sad;		data->currentMV->x = x; data->currentMV->y = y;		data->dir = Direction;	}}static voidCheckCandidateDirectno4v(const int x, const int y, SearchData * const data, const unsigned int Direction){	int32_t sad, xcf, ycf, xcb, ycb;	const uint8_t *ReferenceF;	const uint8_t *ReferenceB;	VECTOR mvs, b_mvs;	if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return;	mvs.x = data->directmvF[0].x + x;	b_mvs.x = ((x == 0) ?		data->directmvB[0].x		: mvs.x - data->referencemv[0].x);	mvs.y = data->directmvF[0].y + y;	b_mvs.y = ((y == 0) ?		data->directmvB[0].y		: mvs.y - data->referencemv[0].y);	if ( (mvs.x > data->max_dx) || (mvs.x < data->min_dx)		|| (mvs.y > data->max_dy) || (mvs.y < data->min_dy)		|| (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx)		|| (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return;	if (data->qpel) {		xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2);		xcb = 4*(b_mvs.x/2); ycb = 4*(b_mvs.y/2);		ReferenceF = xvid_me_interpolate16x16qpel(mvs.x, mvs.y, 0, data);		ReferenceB = xvid_me_interpolate16x16qpel(b_mvs.x, b_mvs.y, 1, data);	} else {		xcf = 4*mvs.x; ycf = 4*mvs.y;		xcb = 4*b_mvs.x; ycb = 4*b_mvs.y;		ReferenceF = GetReference(mvs.x, mvs.y, data);		ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data);	}	sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth);	sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10;	if (data->chroma && sad < *data->iMinSAD)		sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf],							(ycf >> 3) + roundtab_76[ycf & 0xf],							(xcb >> 3) + roundtab_76[xcb & 0xf],							(ycb >> 3) + roundtab_76[ycb & 0xf], data);	if (sad < *(data->iMinSAD)) {		*(data->iMinSAD) = sad;		data->currentMV->x = x; data->currentMV->y = y;		data->dir = Direction;	}}voidCheckCandidate16no4v(const int x, const int y, SearchData * const data, const unsigned int Direction){	int32_t sad, xc, yc;	const uint8_t * Reference;	uint32_t t;	VECTOR * current;	if ( (x > data->max_dx) || ( x < data->min_dx)		|| (y > data->max_dy) || (y < data->min_dy) ) return;	if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; /* non-zero even value */	if (data->qpel_precision) { /* x and y are in 1/4 precision */		Reference = xvid_me_interpolate16x16qpel(x, y, 0, data);		current = data->currentQMV;		xc = x/2; yc = y/2;	} else {		Reference = GetReference(x, y, data);		current = data->currentMV;		xc = x; yc = y;	}	t = d_mv_bits(x, y, data->predMV, data->iFcode,					data->qpel^data->qpel_precision, data->rrv);	sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096);	sad += (data->lambda16 * t * sad)>>10;	if (data->chroma && sad < *data->iMinSAD)		sad += xvid_me_ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3],								(yc >> 1) + roundtab_79[yc & 0x3], data);	if (sad < *(data->iMinSAD)) {		*(data->iMinSAD) = sad;		current->x = x; current->y = y;		data->dir = Direction;	}}voidCheckCandidate16no4v_qpel(const int x, const int y, SearchData * const data, const unsigned int Direction){	int32_t sad, xc, yc;	const uint8_t * Reference;	uint32_t t;	if ( (x > data->max_dx) || ( x < data->min_dx)		|| (y > data->max_dy) || (y < data->min_dy) ) return;	if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; /* non-zero even value */	Reference = xvid_me_interpolate16x16qpel(x, y, 0, data);	xc = x/2; yc = y/2;	t = d_mv_bits(x, y, data->predMV, data->iFcode,					data->qpel^data->qpel_precision, data->rrv);	sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096);	sad += (data->lambda16 * t * sad)>>10;	if (data->chroma && sad < *data->iMinSAD)		sad += xvid_me_ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3],								(yc >> 1) + roundtab_79[yc & 0x3], data);	if (sad < *(data->iMinSAD)) {		data->iMinSAD2 = *(data->iMinSAD);		data->currentQMV2.x = data->currentQMV->x;		data->currentQMV2.y = data->currentQMV->y;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -