📄 uli526x.c
字号:
struct tx_desc *txptr; u32 tdes0; txptr = db->tx_remove_ptr; while (db->tx_packet_cnt) { tdes0 = le32_to_cpu(txptr->tdes0); /* printf(DRV_NAME ": tdes0=%x\n", tdes0); */ if (tdes0 & 0x80000000) break; /* A packet sent completed */ db->tx_packet_cnt--; if (tdes0 != 0x7fffffff) {#ifdef TX_DEBUG printf("%s()tdes0=%x\n", __FUNCTION__, tdes0);#endif if (tdes0 & TDES0_ERR_MASK) { if (tdes0 & 0x0002) { /* UnderRun */ if (!(db->cr6_data & CR6_SFT)) { db->cr6_data = db->cr6_data | CR6_SFT; update_cr6(db->cr6_data, db->ioaddr); } } } } txptr = txptr->next_tx_desc; }/* End of while */ /* Update TX remove pointer to next */ db->tx_remove_ptr = txptr;}/* * Receive the come packet and pass to upper layer */static int uli526x_rx_packet(struct eth_device *dev){ struct uli526x_board_info *db = dev->priv; struct rx_desc *rxptr; int rxlen = 0; u32 rdes0; rxptr = db->rx_ready_ptr; rdes0 = le32_to_cpu(rxptr->rdes0);#ifdef RX_DEBUG printf("%s(): rxptr->rdes0=%x:%x\n", __FUNCTION__, rxptr->rdes0);#endif if (!(rdes0 & 0x80000000)) { /* packet owner check */ if ((rdes0 & 0x300) != 0x300) { /* A packet without First/Last flag */ /* reuse this buf */ printf("A packet without First/Last flag"); uli526x_reuse_buf(rxptr); } else { /* A packet with First/Last flag */ rxlen = ((rdes0 >> 16) & 0x3fff) - 4;#ifdef RX_DEBUG printf("%s(): rxlen =%x\n", __FUNCTION__, rxlen);#endif /* error summary bit check */ if (rdes0 & 0x8000) { /* This is a error packet */ printf("Eroor: rdes0: %lx\n", rdes0); } if (!(rdes0 & 0x8000) || ((db->cr6_data & CR6_PM) && (rxlen > 6))) {#ifdef RX_DEBUG printf("%s(): rx_skb_ptr =%x\n", __FUNCTION__, rxptr->rx_buf_ptr); printf("%s(): rxlen =%x\n", __FUNCTION__, rxlen); printf("%s(): buf addr =%x\n", __FUNCTION__, rxptr->rx_buf_ptr); printf("%s(): rxlen =%x\n", __FUNCTION__, rxlen); int i; for (i = 0; i < 0x20; i++) printf("%s(): data[%x] =%x\n", __FUNCTION__, i, rxptr->rx_buf_ptr[i]);#endif NetReceive(rxptr->rx_buf_ptr, rxlen); uli526x_reuse_buf(rxptr); } else { /* Reuse SKB buffer when the packet is error */ printf("Reuse buffer, rdes0"); uli526x_reuse_buf(rxptr); } } rxptr = rxptr->next_rx_desc; } db->rx_ready_ptr = rxptr; return rxlen;}/* * Reuse the RX buffer */static void uli526x_reuse_buf(struct rx_desc *rxptr){ if (!(rxptr->rdes0 & cpu_to_le32(0x80000000))) rxptr->rdes0 = cpu_to_le32(0x80000000); else printf("Buffer reuse method error");}/* * Initialize transmit/Receive descriptor * Using Chain structure, and allocate Tx/Rx buffer */static void uli526x_descriptor_init(struct uli526x_board_info *db, unsigned long ioaddr){ struct tx_desc *tmp_tx; struct rx_desc *tmp_rx; unsigned char *tmp_buf; dma_addr_t tmp_tx_dma, tmp_rx_dma; dma_addr_t tmp_buf_dma; int i; /* tx descriptor start pointer */ db->tx_insert_ptr = db->first_tx_desc; db->tx_remove_ptr = db->first_tx_desc; outl(db->first_tx_desc_dma, ioaddr + DCR4); /* TX DESC address */ /* rx descriptor start pointer */ db->first_rx_desc = (void *)db->first_tx_desc + sizeof(struct tx_desc) * TX_DESC_CNT; db->first_rx_desc_dma = db->first_tx_desc_dma + sizeof(struct tx_desc) * TX_DESC_CNT; db->rx_ready_ptr = db->first_rx_desc; outl(db->first_rx_desc_dma, ioaddr + DCR3); /* RX DESC address */#ifdef DEBUG printf("%s(): db->first_tx_desc= 0x%x\n", __FUNCTION__, db->first_tx_desc); printf("%s(): db->first_rx_desc_dma= 0x%x\n", __FUNCTION__, db->first_rx_desc_dma);#endif /* Init Transmit chain */ tmp_buf = db->buf_pool_start; tmp_buf_dma = db->buf_pool_dma_start; tmp_tx_dma = db->first_tx_desc_dma; for (tmp_tx = db->first_tx_desc, i = 0; i < TX_DESC_CNT; i++, tmp_tx++) { tmp_tx->tx_buf_ptr = tmp_buf; tmp_tx->tdes0 = cpu_to_le32(0); tmp_tx->tdes1 = cpu_to_le32(0x81000000); /* IC, chain */ tmp_tx->tdes2 = cpu_to_le32(tmp_buf_dma); tmp_tx_dma += sizeof(struct tx_desc); tmp_tx->tdes3 = cpu_to_le32(tmp_tx_dma); tmp_tx->next_tx_desc = tmp_tx + 1; tmp_buf = tmp_buf + TX_BUF_ALLOC; tmp_buf_dma = tmp_buf_dma + TX_BUF_ALLOC; } (--tmp_tx)->tdes3 = cpu_to_le32(db->first_tx_desc_dma); tmp_tx->next_tx_desc = db->first_tx_desc; /* Init Receive descriptor chain */ tmp_rx_dma = db->first_rx_desc_dma; for (tmp_rx = db->first_rx_desc, i = 0; i < RX_DESC_CNT; i++, tmp_rx++) { tmp_rx->rdes0 = cpu_to_le32(0); tmp_rx->rdes1 = cpu_to_le32(0x01000600); tmp_rx_dma += sizeof(struct rx_desc); tmp_rx->rdes3 = cpu_to_le32(tmp_rx_dma); tmp_rx->next_rx_desc = tmp_rx + 1; } (--tmp_rx)->rdes3 = cpu_to_le32(db->first_rx_desc_dma); tmp_rx->next_rx_desc = db->first_rx_desc; /* pre-allocate Rx buffer */ allocate_rx_buffer(db);}/* * Update CR6 value * Firstly stop ULI526X, then written value and start */static void update_cr6(u32 cr6_data, unsigned long ioaddr){ outl(cr6_data, ioaddr + DCR6); udelay(5);}/* * Allocate rx buffer, */static void allocate_rx_buffer(struct uli526x_board_info *db){ int index; struct rx_desc *rxptr; rxptr = db->first_rx_desc; u32 addr; for (index = 0; index < RX_DESC_CNT; index++) { addr = (u32)NetRxPackets[index]; addr += (16 - (addr & 15)); rxptr->rx_buf_ptr = (char *) addr; rxptr->rdes2 = cpu_to_le32(addr); rxptr->rdes0 = cpu_to_le32(0x80000000);#ifdef DEBUG printf("%s(): Number 0x%x:\n", __FUNCTION__, index); printf("%s(): addr 0x%x:\n", __FUNCTION__, addr); printf("%s(): rxptr address = 0x%x\n", __FUNCTION__, rxptr); printf("%s(): rxptr buf address = 0x%x\n", \ __FUNCTION__, rxptr->rx_buf_ptr); printf("%s(): rdes2 = 0x%x\n", __FUNCTION__, rxptr->rdes2);#endif rxptr = rxptr->next_rx_desc; }}/* * Read one word data from the serial ROM */static u16 read_srom_word(long ioaddr, int offset){ int i; u16 srom_data = 0; long cr9_ioaddr = ioaddr + DCR9; outl(CR9_SROM_READ, cr9_ioaddr); outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr); /* Send the Read Command 110b */ SROM_CLK_WRITE(SROM_DATA_1, cr9_ioaddr); SROM_CLK_WRITE(SROM_DATA_1, cr9_ioaddr); SROM_CLK_WRITE(SROM_DATA_0, cr9_ioaddr); /* Send the offset */ for (i = 5; i >= 0; i--) { srom_data = (offset & (1 << i)) ? SROM_DATA_1 : SROM_DATA_0; SROM_CLK_WRITE(srom_data, cr9_ioaddr); } outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr); for (i = 16; i > 0; i--) { outl(CR9_SROM_READ | CR9_SRCS | CR9_SRCLK, cr9_ioaddr); udelay(5); srom_data = (srom_data << 1) | ((inl(cr9_ioaddr) & CR9_CRDOUT) ? 1 : 0); outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr); udelay(5); } outl(CR9_SROM_READ, cr9_ioaddr); return srom_data;}/* * Set 10/100 phyxcer capability * AUTO mode : phyxcer register4 is NIC capability * Force mode: phyxcer register4 is the force media */static void uli526x_set_phyxcer(struct uli526x_board_info *db){ u16 phy_reg; /* Phyxcer capability setting */ phy_reg = phy_read(db->ioaddr, db->phy_addr, 4, db->chip_id) & ~0x01e0; if (db->media_mode & ULI526X_AUTO) { /* AUTO Mode */ phy_reg |= db->PHY_reg4; } else { /* Force Mode */ switch (db->media_mode) { case ULI526X_10MHF: phy_reg |= 0x20; break; case ULI526X_10MFD: phy_reg |= 0x40; break; case ULI526X_100MHF: phy_reg |= 0x80; break; case ULI526X_100MFD: phy_reg |= 0x100; break; } } /* Write new capability to Phyxcer Reg4 */ if (!(phy_reg & 0x01e0)) { phy_reg |= db->PHY_reg4; db->media_mode |= ULI526X_AUTO; } phy_write(db->ioaddr, db->phy_addr, 4, phy_reg, db->chip_id); /* Restart Auto-Negotiation */ phy_write(db->ioaddr, db->phy_addr, 0, 0x1200, db->chip_id); udelay(50);}/* * Write a word to Phy register */static void phy_write(unsigned long iobase, u8 phy_addr, u8 offset, u16 phy_data, u32 chip_id){ u16 i; unsigned long ioaddr; if (chip_id == PCI_ULI5263_ID) { phy_writeby_cr10(iobase, phy_addr, offset, phy_data); return; } /* M5261/M5263 Chip */ ioaddr = iobase + DCR9; /* Send 33 synchronization clock to Phy controller */ for (i = 0; i < 35; i++) phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); /* Send start command(01) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_0, chip_id); phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); /* Send write command(01) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_0, chip_id); phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); /* Send Phy address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, phy_addr & i ? PHY_DATA_1 : PHY_DATA_0, chip_id); /* Send register address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, offset & i ? PHY_DATA_1 : PHY_DATA_0, chip_id); /* written trasnition */ phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); phy_write_1bit(ioaddr, PHY_DATA_0, chip_id); /* Write a word data to PHY controller */ for (i = 0x8000; i > 0; i >>= 1) phy_write_1bit(ioaddr, phy_data & i ? PHY_DATA_1 : PHY_DATA_0, chip_id);}/* * Read a word data from phy register */static u16 phy_read(unsigned long iobase, u8 phy_addr, u8 offset, u32 chip_id){ int i; u16 phy_data; unsigned long ioaddr; if (chip_id == PCI_ULI5263_ID) return phy_readby_cr10(iobase, phy_addr, offset); /* M5261/M5263 Chip */ ioaddr = iobase + DCR9; /* Send 33 synchronization clock to Phy controller */ for (i = 0; i < 35; i++) phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); /* Send start command(01) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_0, chip_id); phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); /* Send read command(10) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_1, chip_id); phy_write_1bit(ioaddr, PHY_DATA_0, chip_id); /* Send Phy address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, phy_addr & i ? PHY_DATA_1 : PHY_DATA_0, chip_id); /* Send register address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, offset & i ? PHY_DATA_1 : PHY_DATA_0, chip_id); /* Skip transition state */ phy_read_1bit(ioaddr, chip_id); /* read 16bit data */ for (phy_data = 0, i = 0; i < 16; i++) { phy_data <<= 1; phy_data |= phy_read_1bit(ioaddr, chip_id); } return phy_data;}static u16 phy_readby_cr10(unsigned long iobase, u8 phy_addr, u8 offset){ unsigned long ioaddr, cr10_value; ioaddr = iobase + DCR10; cr10_value = phy_addr; cr10_value = (cr10_value<<5) + offset; cr10_value = (cr10_value<<16) + 0x08000000; outl(cr10_value, ioaddr); udelay(1); while (1) { cr10_value = inl(ioaddr); if (cr10_value & 0x10000000) break; } return (cr10_value&0x0ffff);}static void phy_writeby_cr10(unsigned long iobase, u8 phy_addr, u8 offset, u16 phy_data){ unsigned long ioaddr, cr10_value; ioaddr = iobase + DCR10; cr10_value = phy_addr; cr10_value = (cr10_value<<5) + offset; cr10_value = (cr10_value<<16) + 0x04000000 + phy_data; outl(cr10_value, ioaddr); udelay(1);}/* * Write one bit data to Phy Controller */static void phy_write_1bit(unsigned long ioaddr, u32 phy_data, u32 chip_id){ outl(phy_data , ioaddr); /* MII Clock Low */ udelay(1); outl(phy_data | MDCLKH, ioaddr); /* MII Clock High */ udelay(1); outl(phy_data , ioaddr); /* MII Clock Low */ udelay(1);}/* * Read one bit phy data from PHY controller */static u16 phy_read_1bit(unsigned long ioaddr, u32 chip_id){ u16 phy_data; outl(0x50000 , ioaddr); udelay(1); phy_data = (inl(ioaddr) >> 19) & 0x1; outl(0x40000 , ioaddr); udelay(1); return phy_data;}/* * Set MAC address to ID Table */static void set_mac_addr(struct eth_device *dev){ int i; u16 addr; struct uli526x_board_info *db = dev->priv; outl(0x10000, db->ioaddr + DCR0); /* Diagnosis mode */ /* Reset dianostic pointer port */ outl(0x1c0, db->ioaddr + DCR13); outl(0, db->ioaddr + DCR14); /* Clear reset port */ outl(0x10, db->ioaddr + DCR14); /* Reset ID Table pointer */ outl(0, db->ioaddr + DCR14); /* Clear reset port */ outl(0, db->ioaddr + DCR13); /* Clear CR13 */ /* Select ID Table access port */ outl(0x1b0, db->ioaddr + DCR13); /* Read MAC address from CR14 */ for (i = 0; i < 3; i++) { addr = dev->enetaddr[2 * i] | (dev->enetaddr[2 * i + 1] << 8); outl(addr, db->ioaddr + DCR14); } /* write end */ outl(0, db->ioaddr + DCR13); /* Clear CR13 */ outl(0, db->ioaddr + DCR0); /* Clear CR0 */ udelay(10); return;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -