📄 readme
字号:
Defining this option enables DataFlash features and allows to read/write in Dataflash via the standard commands cp, md...- SystemACE Support: CONFIG_SYSTEMACE Adding this option adds support for Xilinx SystemACE chips attached via some sort of local bus. The address of the chip must alsh be defined in the CFG_SYSTEMACE_BASE macro. For example: #define CONFIG_SYSTEMACE #define CFG_SYSTEMACE_BASE 0xf0000000 When SystemACE support is added, the "ace" device type becomes available to the fat commands, i.e. fatls.- TFTP Fixed UDP Port: CONFIG_TFTP_PORT If this is defined, the environment variable tftpsrcp is used to supply the TFTP UDP source port value. If tftpsrcp isn't defined, the normal pseudo-random port number generator is used. Also, the environment variable tftpdstp is used to supply the TFTP UDP destination port value. If tftpdstp isn't defined, the normal port 69 is used. The purpose for tftpsrcp is to allow a TFTP server to blindly start the TFTP transfer using the pre-configured target IP address and UDP port. This has the effect of "punching through" the (Windows XP) firewall, allowing the remainder of the TFTP transfer to proceed normally. A better solution is to properly configure the firewall, but sometimes that is not allowed.- Show boot progress: CONFIG_SHOW_BOOT_PROGRESS Defining this option allows to add some board- specific code (calling a user-provided function "show_boot_progress(int)") that enables you to show the system's boot progress on some display (for example, some LED's) on your board. At the moment, the following checkpoints are implemented: Arg Where When 1 common/cmd_bootm.c before attempting to boot an image -1 common/cmd_bootm.c Image header has bad magic number 2 common/cmd_bootm.c Image header has correct magic number -2 common/cmd_bootm.c Image header has bad checksum 3 common/cmd_bootm.c Image header has correct checksum -3 common/cmd_bootm.c Image data has bad checksum 4 common/cmd_bootm.c Image data has correct checksum -4 common/cmd_bootm.c Image is for unsupported architecture 5 common/cmd_bootm.c Architecture check OK -5 common/cmd_bootm.c Wrong Image Type (not kernel, multi, standalone) 6 common/cmd_bootm.c Image Type check OK -6 common/cmd_bootm.c gunzip uncompression error -7 common/cmd_bootm.c Unimplemented compression type 7 common/cmd_bootm.c Uncompression OK -8 common/cmd_bootm.c Wrong Image Type (not kernel, multi, standalone) 8 common/cmd_bootm.c Image Type check OK -9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX) 9 common/cmd_bootm.c Start initial ramdisk verification -10 common/cmd_bootm.c Ramdisk header has bad magic number -11 common/cmd_bootm.c Ramdisk header has bad checksum 10 common/cmd_bootm.c Ramdisk header is OK -12 common/cmd_bootm.c Ramdisk data has bad checksum 11 common/cmd_bootm.c Ramdisk data has correct checksum 12 common/cmd_bootm.c Ramdisk verification complete, start loading -13 common/cmd_bootm.c Wrong Image Type (not PPC Linux Ramdisk) 13 common/cmd_bootm.c Start multifile image verification 14 common/cmd_bootm.c No initial ramdisk, no multifile, continue. 15 common/cmd_bootm.c All preparation done, transferring control to OS -30 lib_ppc/board.c Fatal error, hang the system -31 post/post.c POST test failed, detected by post_output_backlog() -32 post/post.c POST test failed, detected by post_run_single() 34 common/cmd_doc.c before loading a Image from a DOC device -35 common/cmd_doc.c Bad usage of "doc" command 35 common/cmd_doc.c correct usage of "doc" command -36 common/cmd_doc.c No boot device 36 common/cmd_doc.c correct boot device -37 common/cmd_doc.c Unknown Chip ID on boot device 37 common/cmd_doc.c correct chip ID found, device available -38 common/cmd_doc.c Read Error on boot device 38 common/cmd_doc.c reading Image header from DOC device OK -39 common/cmd_doc.c Image header has bad magic number 39 common/cmd_doc.c Image header has correct magic number -40 common/cmd_doc.c Error reading Image from DOC device 40 common/cmd_doc.c Image header has correct magic number 41 common/cmd_ide.c before loading a Image from a IDE device -42 common/cmd_ide.c Bad usage of "ide" command 42 common/cmd_ide.c correct usage of "ide" command -43 common/cmd_ide.c No boot device 43 common/cmd_ide.c boot device found -44 common/cmd_ide.c Device not available 44 common/cmd_ide.c Device available -45 common/cmd_ide.c wrong partition selected 45 common/cmd_ide.c partition selected -46 common/cmd_ide.c Unknown partition table 46 common/cmd_ide.c valid partition table found -47 common/cmd_ide.c Invalid partition type 47 common/cmd_ide.c correct partition type -48 common/cmd_ide.c Error reading Image Header on boot device 48 common/cmd_ide.c reading Image Header from IDE device OK -49 common/cmd_ide.c Image header has bad magic number 49 common/cmd_ide.c Image header has correct magic number -50 common/cmd_ide.c Image header has bad checksum 50 common/cmd_ide.c Image header has correct checksum -51 common/cmd_ide.c Error reading Image from IDE device 51 common/cmd_ide.c reading Image from IDE device OK 52 common/cmd_nand.c before loading a Image from a NAND device -53 common/cmd_nand.c Bad usage of "nand" command 53 common/cmd_nand.c correct usage of "nand" command -54 common/cmd_nand.c No boot device 54 common/cmd_nand.c boot device found -55 common/cmd_nand.c Unknown Chip ID on boot device 55 common/cmd_nand.c correct chip ID found, device available -56 common/cmd_nand.c Error reading Image Header on boot device 56 common/cmd_nand.c reading Image Header from NAND device OK -57 common/cmd_nand.c Image header has bad magic number 57 common/cmd_nand.c Image header has correct magic number -58 common/cmd_nand.c Error reading Image from NAND device 58 common/cmd_nand.c reading Image from NAND device OK -60 common/env_common.c Environment has a bad CRC, using default 64 net/eth.c starting with Ethernetconfiguration. -64 net/eth.c no Ethernet found. 65 net/eth.c Ethernet found. -80 common/cmd_net.c usage wrong 80 common/cmd_net.c before calling NetLoop() -81 common/cmd_net.c some error in NetLoop() occured 81 common/cmd_net.c NetLoop() back without error -82 common/cmd_net.c size == 0 (File with size 0 loaded) 82 common/cmd_net.c trying automatic boot 83 common/cmd_net.c running autoscript -83 common/cmd_net.c some error in automatic boot or autoscript 84 common/cmd_net.c end without errorsModem Support:--------------[so far only for SMDK2400 and TRAB boards]- Modem support endable: CONFIG_MODEM_SUPPORT- RTS/CTS Flow control enable: CONFIG_HWFLOW- Modem debug support: CONFIG_MODEM_SUPPORT_DEBUG Enables debugging stuff (char screen[1024], dbg()) for modem support. Useful only with BDI2000.- Interrupt support (PPC): There are common interrupt_init() and timer_interrupt() for all PPC archs. interrupt_init() calls interrupt_init_cpu() for cpu specific initialization. interrupt_init_cpu() should set decrementer_count to appropriate value. If cpu resets decrementer automatically after interrupt (ppc4xx) it should set decrementer_count to zero. timer_interrupt() calls timer_interrupt_cpu() for cpu specific handling. If board has watchdog / status_led / other_activity_monitor it works automatically from general timer_interrupt().- General: In the target system modem support is enabled when a specific key (key combination) is pressed during power-on. Otherwise U-Boot will boot normally (autoboot). The key_pressed() fuction is called from board_init(). Currently key_pressed() is a dummy function, returning 1 and thus enabling modem initialization. If there are no modem init strings in the environment, U-Boot proceed to autoboot; the previous output (banner, info printfs) will be supressed, though. See also: doc/README.ModemConfiguration Settings:------------------------ CFG_LONGHELP: Defined when you want long help messages included; undefine this when you're short of memory.- CFG_PROMPT: This is what U-Boot prints on the console to prompt for user input.- CFG_CBSIZE: Buffer size for input from the Console- CFG_PBSIZE: Buffer size for Console output- CFG_MAXARGS: max. Number of arguments accepted for monitor commands- CFG_BARGSIZE: Buffer size for Boot Arguments which are passed to the application (usually a Linux kernel) when it is booted- CFG_BAUDRATE_TABLE: List of legal baudrate settings for this board.- CFG_CONSOLE_INFO_QUIET Suppress display of console information at boot.- CFG_CONSOLE_IS_IN_ENV If the board specific function extern int overwrite_console (void); returns 1, the stdin, stderr and stdout are switched to the serial port, else the settings in the environment are used.- CFG_CONSOLE_OVERWRITE_ROUTINE Enable the call to overwrite_console().- CFG_CONSOLE_ENV_OVERWRITE Enable overwrite of previous console environment settings.- CFG_MEMTEST_START, CFG_MEMTEST_END: Begin and End addresses of the area used by the simple memory test.- CFG_ALT_MEMTEST: Enable an alternate, more extensive memory test.- CFG_MEMTEST_SCRATCH: Scratch address used by the alternate memory test You only need to set this if address zero isn't writeable- CFG_TFTP_LOADADDR: Default load address for network file downloads- CFG_LOADS_BAUD_CHANGE: Enable temporary baudrate change while serial download- CFG_SDRAM_BASE: Physical start address of SDRAM. _Must_ be 0 here.- CFG_MBIO_BASE: Physical start address of Motherboard I/O (if using a Cogent motherboard)- CFG_FLASH_BASE: Physical start address of Flash memory.- CFG_MONITOR_BASE: Physical start address of boot monitor code (set by make config files to be same as the text base address (TEXT_BASE) used when linking) - same as CFG_FLASH_BASE when booting from flash.- CFG_MONITOR_LEN: Size of memory reserved for monitor code, used to determine _at_compile_time_ (!) if the environment is embedded within the U-Boot image, or in a separate flash sector.- CFG_MALLOC_LEN: Size of DRAM reserved for malloc() use.- CFG_BOOTM_LEN: Normally compressed uImages are limited to an uncompressed size of 8 MBytes. If this is not enough, you can define CFG_BOOTM_LEN in your board config file to adjust this setting to your needs.- CFG_BOOTMAPSZ: Maximum size of memory mapped by the startup code of the Linux kernel; all data that must be processed by the Linux kernel (bd_info, boot arguments, eventually initrd image) must be put below this limit.- CFG_MAX_FLASH_BANKS: Max number of Flash memory banks- CFG_MAX_FLASH_SECT: Max number of sectors on a Flash chip- CFG_FLASH_ERASE_TOUT: Timeout for Flash erase operations (in ms)- CFG_FLASH_WRITE_TOUT: Timeout for Flash write operations (in ms)- CFG_FLASH_LOCK_TOUT Timeout for Flash set sector lock bit operation (in ms)- CFG_FLASH_UNLOCK_TOUT Timeout for Flash clear lock bits operation (in ms)- CFG_FLASH_PROTECTION If defined, hardware flash sectors protection is used instead of U-Boot software protection.- CFG_DIRECT_FLASH_TFTP: Enable TFTP transfers directly to flash memory; without this option such a download has to be performed in two steps: (1) download to RAM, and (2) copy from RAM to flash. The two-step approach is usually more reliable, since you can check if the download worked before you erase the flash, but in some situations (when sytem RAM is too limited to allow for a tempory copy of the downloaded image) this option may be very useful.- CFG_FLASH_CFI: Define if the flash driver uses extra elements in the common flash structure for storing flash geometry.- CFG_FLASH_CFI_DRIVER This option also enables the building of the cfi_flash driver in the drivers directory- CFG_FLASH_QUIET_TEST If this option is defined, the common CFI flash doesn't print it's warning upon not recognized FLASH banks. This is useful, if some of the configured banks are only optionally available.- CFG_RX_ETH_BUFFER: Defines the number of ethernet receive buffers. On some ethernet controllers it is recommended to set this value to 8 or even higher (EEPRO100 or 405 EMAC), since all buffers can be full shortly after enabling the interface on high ethernet traffic. Defaults to 4 if not defined.The following definitions that deal with the placement and managementof environment data (variable area); in general, we support thefollowing configurations:- CFG_ENV_IS_IN_FLASH: Define this if the environment is in flash memory. a) The environment occupies one whole flash sector, which is "embedded" in the text segment with the U-Boot code. This happens usually with "bottom boot sector" or "top boot sector" type flash chips, which have several smaller sectors at the start or the end. For instance, such a layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In such a case you would place the environment in one of the 4 kB sectors - with U-Boot code before and after it. With "top boot sector" type flash chips, you would put the environment in one of the last sectors, leaving a gap between U-Boot and the environment. - CFG_ENV_OFFSET: Offset of environment data (variable area) to the beginning of flash memory; for instance, with bottom boot type flash chips the second sector can be used: the offset for this sector is given here. CFG_ENV_OFFSET is used relative to CFG_FLASH_BASE. - CFG_ENV_ADDR: This is just another way to specify the start address of the flash sector containing the environment (instead of CFG_ENV_OFFSET). - CFG_ENV_SECT_SIZE: Size of the sector containing the environment. b) Sometimes flash chips have few, equal sized, BIG sectors. In such a case you don't want to spend a whole sector for the environment. - CFG_ENV_SIZE: If you use this in combination with CFG_ENV_IS_IN_FLASH and CFG_ENV_SECT_SIZE, you can specify to use only a part of this flash sector for the environment. This saves memory for the RAM copy of the environment. It may also save flash memory if you decide to use this when your environment is "embedded" within U-Boot code, since then the remainder of the flash sector could be used for U-Boot code. It should be pointed out that this is STRONGLY DISCOUR
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -