📄 cv_cpann.m
字号:
function cv = cv_cpann(X,class,settings,cv_groups)
% cross validation for counterpropagation artificial neural networks (CPANNs)
% cross validation is perfomred with venetian blinds, i.e. with 3 cv groups
% the split of the first group will be [1,0,0,1,0,0,....,1,0,0] and so on.
%
% cv = cv_cpann(X,class,settings,cv_groups);
%
% input:
% X data [n x p], n samples, p variables
% class class vector [n x 1], numerical labels
% settings setting structure
% cv_groups number of cross-validation groups
%
% output:
% cv is a structure, with the following fields
% cv.pred_class calculated class in cross validation [n x 1]
% cv.class_param structure containing confusion matrix,
% error rate, non-error rate, specificity,
% precision and sensitivity
%
% important:
% - to define the settings structure type 'help som_settings'
% - data are always range scaled (inbetween 0 and 1) in order to
% make them comparable with net weights
%
% see the HTML HELP files (help.htm) for details and examples
%
% version 1.0 - may 2007
% Davide Ballabio
% Milano Chemometrics and QSAR Research Group
% www.disat.unimib.it/chm
% checks
errortype = cpann_check(X,class,settings,[],'cv');
if ~strcmp(errortype,'none')
disp(errortype)
return
end
nobj = size(X,1);
pred_cv = zeros(nobj,1);
for i=1:cv_groups
disp(['cross validating group ' num2str(i)])
% prepares objects
in = ones(nobj,1);
out = [i:cv_groups:nobj];
in(out) = 0;
X_training = X(find(in==1),:);
X_test = X(find(in==0),:);
class_training = class(find(in==1));
class_test = class(find(in==0));
% calculates model
model = model_cpann(X_training,class_training,settings);
pred = pred_cpann(X_test,model);
pred_cv(find(in==0)) = pred.class;
end
class_param = cpann_class_param(pred_cv,class);
% saves results
cv.type = 'cpann';
cv.pred_class = pred_cv;
cv.class_param = class_param;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -