📄 node96.html
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3.2 Final//FR"><!-- Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) --><!-- by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds --><!-- Modified Simulog 03/97 --><HTML><HEAD><TITLE>7.4 Basic manipulations</TITLE><LINK REL=STYLESHEET TYPE="text/css" HREF="./Modulef.css" TITLE="Modulef CSS"><meta name="description" value="7.4 Basic manipulations"><meta name="keywords" value="Guide6"><meta name="resource-type" value="document"><meta name="distribution" value="global"></HEAD><BODY BGCOLOR="#FFFFFF"><P> <IMG SRC="../icons/smallmod.gif" WIDTH=211 HEIGHT=50 ALIGN=BOTTOM ALT="Modulef"><A NAME=tex2html1599 HREF="node95.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/previous_motif.gif" ALT="previous"></A><A NAME=tex2html1605 HREF="node92.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/up_motif.gif" ALT="up"></A><A NAME=tex2html1607 HREF="node97.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/next_motif.gif" ALT="next"></A><A NAME=tex2html1609 HREF="node2.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/contents_motif.gif" ALT="contents"></A><A HREF="../Guide6-18/node96.html"><IMG BORDER=0 SRC="../icons/zoom18.gif" ALIGN=BOTTOM ALT="[BIG]"></A><A HREF="../Guide6-14/node96.html"><IMG BORDER=0 SRC="../icons/zoom14.gif" ALIGN=BOTTOM ALT="[Normal]"></A><A HREF="../Guide6-10/node96.html"><IMG BORDER=0 SRC="../icons/zoom10.gif" ALIGN=BOTTOM ALT="[small]"></A><BR><B> Next: </B> <A NAME=tex2html1608 HREF="node97.html">7.5 Conversions</A><B>Up: </B> <A NAME=tex2html1606 HREF="node92.html">7 Internal programs</A><B> Prev: </B> <A NAME=tex2html1600 HREF="node95.html">7.3 Particular displays</A><B><A HREF="node2.html" >Contents</A></B><HR SIZE=3 WIDTH="75%"><H1><A NAME=SECTION05740000000000000000>7.4 Basic manipulations</A></H1><P><P><P><UL><LI><P><PRE> SUBROUTINE GENPLY(R, A, N, T) INTEGER N REAL R, A, T(2, N+1)</PRE><P>generates N+1 (X, Y) couples in T, defining a <A NAME=3389> </A> polygon with N sides centered at the origin, withradius R and angle A.<P><LI><P><PRE> SUBROUTINE ARC3P(P1, P2, P3, RES) REAL P1(2), P2(2), P3(2), RES(5)</PRE><P>calculates the arc<A NAME=3390> </A> of a circle going through the 3 points, P1, P2 and P3, by joining them in this order, where on exit RES(1:5) defines the arc in the following manner:<P> RES(1), RES(2): first point on the arc;<P> RES(3), RES(4): arc's center;<P> RES(5): angle of arc.<P><LI><P><PRE> REAL FUNCTION DIST2P(P1, P2) REAL P1(3), P2(3)</PRE><P>returns the<A NAME=3391> </A> distance of 2 points: <b> DIST2P=distance(P1, P2)</b><P><LI><P><PRE> SUBROUTINE DP1DR(D, P1, DR) REAL D(3), P1(2), DR(2)</PRE><P>returns D, the<A NAME=3392> </A> line going through a point (P1) and perpendicular to a direction (DR).The line's equation is given by: <b>D(1)*x + D(2)*y + D(3) =0 </b><P><LI><P><PRE> SUBROUTINE DPP(D, P1, P2, IRES) SUBROUTINE DP1P2(D,P1,P2,IRES) REAL D(3), P1(2), P2(2) INTEGER IRES</PRE><P>returns D, the line going through<A NAME=3393> </A> two points P1 and<A NAME=3394> </A> P2. IRES=0 if OK.<P> The line's equation is given by: <b> D(1)*x + D(2)*y + D(3) =0 </b><P><LI><P><PRE> REAL FUNCTION DTP1D1(P, D) REAL P(2), D(3), X</PRE><P>returns DTP1D1, the <A NAME=3395> </A> distance of point P from line D. The line's equation is given by: <b> D(1)*x + D(2)*y + D(3) =0 </b> <P><P><LI><P><PRE> REAL FUNCTION DTP1P2(P1, P2) REAL P1(2), P2(2), DX, DY</PRE><P>returns DTP1P2, the distance between point P1 and<A NAME=3396> </A> point P2.<P><LI><P><PRE> REAL FUNCTION DTP1SG(P, P1, P2) REAL P1(2), P2(2), P(2)</PRE><P>returns DTP1SG, the distance <A NAME=3397> </A> of point P from the segment defined by the 2 points, P1 and P2.<P><LI><P><PRE> SUBROUTINE ITDD(P, D1, D2, IRES) SUBROUTINE ITD1D2(P, D1, D2, IRES) REAL P(2), D1(3), D2(3)</PRE><P>returns P, the<A NAME=3398> </A> intersection point of <A NAME=3399> </A> two lines D1 and D2 definedby D1(1:3) and D2(1:3). IRES = 0 if OK.<P> <LI><P><PRE> SUBROUTINE MDP1P2(D, P1, P2, IRES) REAL D(3), P1(2), P2(2)</PRE><P>returns D, the bisecting line<A NAME=3400> </A> of the segment going through points P1 and P2. The line's equation is given by: <b> D(1)*x + D(2)*y + D(3) =0 </b><P><LI><P><PRE> SUBROUTINE PJPD(P, P1, D1) SUBROUTINE PJP1D1(P, P1, D1) REAL P(2), D1(3), P1(2)</PRE><P>returns P, the projection point<A NAME=3401> </A> of P1 on <A NAME=3402> </A> line D1. The line's equation is given by: <b>D1(1)*x + D1(2)*y + D1(3) =0 </b><P><LI><P><PRE> SUBROUTINE SLOPE(PE, PT, C, R, IRES) REAL PT(2), C(2), R, PE(3)</PRE><P>returns PE, the <A NAME=3403> </A> slope of the line going through PT, tangent to circle (C, R).<P></UL><P><P><P><HR SIZE=3 WIDTH="75%"><IMG SRC="../icons/smallmod.gif" WIDTH=211 HEIGHT=50 ALIGN=BOTTOM ALT="Modulef"><A NAME=tex2html1599 HREF="node95.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/previous_motif.gif" ALT="previous"></A><A NAME=tex2html1605 HREF="node92.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/up_motif.gif" ALT="up"></A><A NAME=tex2html1607 HREF="node97.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/next_motif.gif" ALT="next"></A><A NAME=tex2html1609 HREF="node2.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/contents_motif.gif" ALT="contents"></A><A HREF="../Guide6-18/node96.html"><IMG BORDER=0 SRC="../icons/zoom18.gif" ALIGN=BOTTOM ALT="[BIG]"></A><A HREF="../Guide6-14/node96.html"><IMG BORDER=0 SRC="../icons/zoom14.gif" ALIGN=BOTTOM ALT="[Normal]"></A><A HREF="../Guide6-10/node96.html"><IMG BORDER=0 SRC="../icons/zoom10.gif" ALIGN=BOTTOM ALT="[small]"></A><BR><B> Next: </B> <A NAME=tex2html1608 HREF="node97.html">7.5 Conversions</A><B>Up: </B> <A NAME=tex2html1606 HREF="node92.html">7 Internal programs</A><B> Prev: </B> <A NAME=tex2html1600 HREF="node95.html">7.3 Particular displays</A><B><A HREF="node2.html" >Contents</A></B><BR> <HR><P><ADDRESS></ADDRESS></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -