⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node41.html

📁 htmdoc for html coding
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<P> This menu is analogous to that of <b> TRACXX</b> which enables the user to definethe axis of  the cut  (it corresponds therefore to plotting a curve, which is explained in detailin  <b> TRACXX</b>).<P><P><P>Once the  plot of the cut has been obtained, the following <i> graphics</i> menu appears:<P><UL><LI> End of cuts (0) and return to the module's main menu,<LI> Continue (1), re-plot the mesh,<LI> Refresh (4) the screen,<LI> Exit (5) from session,<LI> Produce a softcopy (8) or hardcopy (9) of the cut on another graphics terminal; having done this,the user is returned to the initial state (of this <i> graphics</i> menu).</UL><P><DL COMPACT><DT>Example:<DD> Figure <A HREF="#figtrmaco4">3.6</A> is nothing other that cut through the displacements in the x-direction of test 2. The cut line is vertical and passes throughthe center of the circles (consult the geometry of the figures shown earlier)which explains the presence of two holes in the cut.<P>The plot was obtained by typing the following sequence:<P><UL><LI> figure <A HREF="#figtrmaco4">3.6</A> : -1 t2mail t2coor 10 4 t2b 0 7 7 OUI 61 'cut line''displacement in X, VN' 0  8 2 bw ncadre nlogo   x12 y12  ftrmaco4 v</UL>  </DL><P><P><A NAME=2259>&#160;</A><IMG BORDER=0 ALIGN=BOTTOM ALT="" SRC="img81.gif"><BR><STRONG>Figure 3.6:</STRONG> <i> Example <b> TRMCXX</b> 2D: cut</i><A NAME=2257iExample2253bTRMCXXb22532Dcuti2257>&#160;</A><BR><P><P><DT>Flux:<DD>  <P>This option enables the user to visualize the flux for mixed finite elements only. The fluxis represented by  arrows, as in the case of velocities, and we can consequentlyconsult the operating instructions corresponding to  plotting velocities.The only difference is that of key 56 in the main menu.<P><PRE> ------------------------------------------------------------ | 56 | VISUALISATION OF FLUX     |          EVERYWHERE ------------------------------------------------------------</PRE><P>This choice  (by default) can be modified by activating key 56:<P><PRE>    ON ALL THE REFERENCES      : 0    EVERYWHERE                 : 1    ON SOME REFERENCES         : 2</PRE><P>Case  2 consists of specifying only those reference numbers which we desire.<P> </DL><P><P><P><H2><A NAME=SECTION04424000000000000000>3.2.4 P1 interpolation of solutions</A></H2><P><P><P>When plotting the isovalues of a solution it is necessary to define exactly what we want to plot.The finite elements used (described in D.S. <b> MAIL</b>) can be more, or less, rich(as a function of the degree of interpolation chosen).<P>The plot program is purely P1 and applies to the case of  a triangular type element.Using the solution values atthe three vertices of the triangle, the isovalues present in the triangle are calculated.<P>Consequently, each finite element must be decomposed into the most judicious set  oftriangles such that the quality of the interpolation is preserved:it does not correspond to making beautiful plots but plots conforming to knowninformation. The decomposition must thus satisfy this concern.It corresponds thus to interpreting  each element in terms of P1 triangles.<P><P><P>The choices made for the usual element are given below:<P><UL><LI> a P1 triangle  (TRIA 2P1D, TRIA AP1D) is considered as such,<LI> a P2 triangle (TRIA 2P2D or TRIA 2P2C and TRIA AP2C) is decomposed into 4 P1 sub-triangles,<LI> a Q1 quadrilateral (QUAD 2Q1D, QUAD AQ1C)is decomposed into 4 P1 sub-triangles by creating itsbarycentre,<LI> a Q2  quadrilateral (QUAD 2Q2D or QUAD 2Q2C and QUAD AQ2C) is decomposed into 16 P1 sub-triangles inthe following manner:<UL><LI> we decompose the  initial quadrilateral into 4 sud-quadrilaterals by creating its  barycentre, and thendecompose all these elements into 4 P1 sub-triangles.</UL><LI> etc.</UL><P>Only certain elements are actually known  and thus considered by the plot module.If an element is not known, the module will stop and indicate that it does not know this type of element. The user must then add it by decomposing itin a consistent manner with the corresponding interpolation.<P>The decomposition is the object of subroutine RANGPQ in library UTIL. This subroutine has the following form:<P><PRE>      SUBROUTINE RANGPQ(NOM1,NOM2,NCGE,NNO,NONO,NPO,NOPOI,COORP,     +                  SOLU,XX,YY,SOL,NTRIP1)C  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++C  AIM : DECOMPOSE THE ELEMENT INTO P1 TRIANGLES ONLYC  ---C  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++C  INPUT PARAMETERS :C  ------------------C  NOM1, NOM2 : ELEMENT NAMESC  NCGE,NNO,NONO(*),NPO,NOPOI(*) : USUAL NOTATIONC  COORP   : POINT COORDINATESC  SOLU    : SOLUTION ARRAY = B4(NDSMT,NDT,1:NOE)C            WITH NDSMT : RIGHT-HAND-SIDE CONSIDERED ( BETWEEN 1 AND NDSM )C                 NDT   : THE D.O.F. CONSIDERED ( BETWEEN 1 AND ND )C                 B4    : ARRAY B4 CONSIDEREDC            REMARK     : SUBROUTINE CHARB4 CREATES SOLU FROM THE GLOBAL B4C  OUTPUT PARAMETERS :C  -------------------C  XX(*),YY(*) : COORDINATES OF POINTS P1C  SOL     : CORRESPONDING SOLUTIONSC  NTRIP1  : NUMBER OF P1 ELEMENTS IN THE DECOMPOSITION OF THE ELEMENTC  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++CC  SUBROUTINE TO BE COMPLETED FOR ALL NEW ELEMENTS INTERPRETED INTO P1.CC  +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++C  PROGRAMMEUR  : PL GEORGE  INRIA  1987C  ....................................................................      DIMENSION NONO(*),NOPOI(*),COORP(2,*),SOLU(*),XX(*),YY(*),     +          SOL(*),SOLP1(3),SOLP2(6),SOLQ1(4),SOLQ2(9),INDIC(4),     +          SOLQ5(5)      CHARACTER*4 NOM1,NOM2  200 FORMAT(' %% ERREUR RANGPQ : ELEMENT ',A4,A4,' NON CONNU'///     +       ' VOIR LE SP RANGPQ ET AJOUTER CET ELEMENT'///)C      IMPRIM = IINFO('I')C     -------------------------------------------------------C     ------------         THE TRIANGLES         ------------C     -------------------------------------------------------      IF ( NOM1 .EQ. 'TRIA'  ) THENC        -------------   TRIANGLE :  NOM COMMENCANT PAR TRIA         IF( NOM2 .EQ. '2P1D' ) THENC        ------   TRIA 2P1D   ------             NTRIP1 = 1             NUMER  = 0             DO 301 J=1,NNO                SOLP1(J) = SOLU(NONO(J))                INDIC(J) = J  301        CONTINUE             CALL RANGP1(NUMER,COORP,INDIC,SOLP1,XX,YY,SOL)         ELSE IF( NOM2 .EQ. 'AP1D' ) THENC        ------   TRIA AP1D   ------             NTRIP1 = 1             NUMER  = 0             DO 339 J=1,NNO                SOLP1(J) = SOLU(NONO(J))                INDIC(J) = J  339        CONTINUE             CALL RANGP1(NUMER,COORP,INDIC,SOLP1,XX,YY,SOL)         ELSE .....              .....              .....               elements unknown         ELSE             WRITE (IMPRIM,200) NOM1,NOM2             CALL TILT                           elements unknown         END IFC     -------------------------------------------------------C     ------------         THE QUADRILATERALS    ------------C     -------------------------------------------------------      ELSE IF ( NOM1 .EQ. 'QUAD' ) THEN         IF ( NOM2 .EQ. '2Q1D' ) THENC        ------   QUAD 2Q1D   ------             NTRIP1 = 4             DO 406 J=1,NNO               SOLQ1(J) = SOLU(NONO(J))               INDIC(J) = J  406        CONTINUE             NUMER = 0             CALL RANGQ1(NUMER,COORP,INDIC,SOLQ1,XX,YY,SOL)         ELSE .....              .....              .....               elements unknown         ELSE             WRITE (IMPRIM,200) NOM1,NOM2             CALL TILT         END IF                               elements unknown      ELSE         WRITE (IMPRIM,200) NOM1,NOM2         CALL TILT                      elements unknown      END IF      END</PRE><P>Subroutine RANGPQ uses a certain number of element subroutines(RANGP1, RANGP2, RANGQ1, RANGQ2 ...). To add a finite element corresponds to adding theappropriate  branch and using the appropriate element subroutine or writinga new one (each one very simple). To govern  the computation, we have at our disposal, NOM1 and NOM2, the two parts of theelement name, its geometric code, its number of points and nodes and thearrays containing its points and nodes (it seems that with this information we are ableto recognize all the elements without ambiguity).<P><DL COMPACT><DT>Remark:<DD> The label used for an element recalls its geometry and number.For example, a 2P1D triangle has a geometric code NCGE = 3 and number 1 (100001 or 200001). The label of thiselement is thus set to 301.<P> </DL><P>Decomposition example using the subroutine names:<P><TABLE COLS=3><COL ALIGN=RIGHT><COL ALIGN=CENTER><COL ALIGN=JUSTIFY WIDTH="6cm"><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>    RANGPQ </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>         if </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> TRIA 2P1D  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> RANGP1        1 P1 <IMG BORDER=0 ALIGN=BOTTOM ALT="" SRC="img71.gif"> 1 P1   </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> TRIA AP1D  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> the same                                </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>         if </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> TRIA 2P2D  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> RANGP2        1 P2 <IMG BORDER=0 ALIGN=BOTTOM ALT="" SRC="img71.gif"> 4 P1   </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - calculate the middle coordinates       </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - and store RANGP1 the solution          </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>         if </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> TRIA 2P2C  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> RANGP2        1 P  <IMG BORDER=0 ALIGN=BOTTOM ALT="" SRC="img71.gif">2 4 P1  </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - store RANGP1 the solution             </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> TRIA AP2C  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> the same                                </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>         if </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> QUAD 2Q1D  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> RANGQ1        1 Q1  <IMG BORDER=0 ALIGN=BOTTOM ALT="" SRC="img71.gif"> 4 P1  </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - calculate the barycentre and the solution  </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - and store RANGP1 this solution             </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> QUAD AQ1C  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> the same                                      </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>         if </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> QUAD 2Q2D  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> RANGQ2        1 Q2  <IMG BORDER=0 ALIGN=BOTTOM ALT="" SRC="img71.gif"> 16 P1 </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - calculate the middle coordinates      </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - calculate the barycentre and the solution </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> and store RANGQ1 (RANGP1) this solution   </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>         if </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> QUAD 2Q2C  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> RANGQ2        1 Q2  <IMG BORDER=0 ALIGN=BOTTOM ALT="" SRC="img71.gif">  16 P1  </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - calculate the barycentre and the solution </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP>                 </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> - and store RANGQ1 (RANGP1) this solution   </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> QUAD AQ2C  :    </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"> the same                                  </TD></TR><TR><TD VALIGN=BASELINE ALIGN=RIGHT NOWRAP>            </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> ...... etc      </TD><TD VALIGN=BASELINE ALIGN=LEFT WIDTH="170"></TD></TR></TABLE><P><P><P><HR SIZE=3 WIDTH="75&#37;"><IMG SRC="../icons/smallmod.gif" WIDTH=211 HEIGHT=50 ALIGN=BOTTOM	ALT="Modulef"><A NAME=tex2html963 HREF="node40.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/previous_motif.gif"	ALT="previous"></A><A NAME=tex2html969 HREF="node39.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/up_motif.gif"	ALT="up"></A><A NAME=tex2html971 HREF="node42.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/next_motif.gif"	ALT="next"></A><A NAME=tex2html973 HREF="node2.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/contents_motif.gif"	ALT="contents"></A><A HREF="../Guide6-18/node41.html"><IMG BORDER=0 SRC="../icons/zoom18.gif" ALIGN=BOTTOM	ALT="[BIG]"></A><A HREF="../Guide6-14/node41.html"><IMG BORDER=0 SRC="../icons/zoom14.gif" ALIGN=BOTTOM	ALT="[Normal]"></A><A HREF="../Guide6-10/node41.html"><IMG BORDER=0 SRC="../icons/zoom10.gif" ALIGN=BOTTOM	ALT="[small]"></A><BR><B> Next: </B> <A NAME=tex2html972 HREF="node42.html">3.3 Two-dimensional stresses  TRSTXX</A><B>Up: </B> <A NAME=tex2html970 HREF="node39.html">3 Visualization of solutions</A><B> Prev: </B> <A NAME=tex2html964 HREF="node40.html">4.1 Introduction</A><B><A HREF="node2.html"	>Contents</A></B><BR> <HR><P><ADDRESS></ADDRESS></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -