⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node62.html

📁 htmdoc for html coding
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3.2 Final//FR"><!-- Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) --><!-- by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds --><!-- Modified Simulog 03/97 --><HTML><HEAD><TITLE>3.4.3 Calling of module GEL3D1</TITLE><LINK REL=STYLESHEET TYPE="text/css"	HREF="./Modulef.css" TITLE="Modulef CSS"><meta name="description" value="3.4.3 Calling of module GEL3D1"><meta name="keywords" value="Guide3"><meta name="resource-type" value="document"><meta name="distribution" value="global"></HEAD><BODY BGCOLOR="#FFFFFF"><P> <IMG SRC="../icons/smallmod.gif" WIDTH=211 HEIGHT=50 ALIGN=BOTTOM	ALT="Modulef"><A NAME=tex2html1615 HREF="node61.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/previous_motif.gif"	ALT="previous"></A><A NAME=tex2html1621 HREF="node59.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/up_motif.gif"	ALT="up"></A><A NAME=tex2html1623 HREF="node63.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/next_motif.gif"	ALT="next"></A><A NAME=tex2html1625 HREF="node2.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/contents_motif.gif"	ALT="contents"></A><A NAME=tex2html1626 HREF="node28.html"><IMG BORDER=0 ALIGN=BOTTOM SRC="../icons/index_motif.gif"	ALT="index"></A><A HREF="../Guide3-18/node62.html"><IMG BORDER=0 SRC="../icons/zoom18.gif" ALIGN=BOTTOM	ALT="[BIG]"></A><A HREF="../Guide3-14/node62.html"><IMG BORDER=0 SRC="../icons/zoom14.gif" ALIGN=BOTTOM	ALT="[Normal]"></A><A HREF="../Guide3-10/node62.html"><IMG BORDER=0 SRC="../icons/zoom10.gif" ALIGN=BOTTOM	ALT="[small]"></A><BR><B> Next: </B> <A NAME=tex2html1624 HREF="node63.html">3.4.4 Examples of use</A><B>Up: </B> <A NAME=tex2html1622 HREF="node59.html">3.4 Method for a hexahedral topology</A><B> Prev: </B> <A NAME=tex2html1616 HREF="node61.html">3.4.2 Description of the input data</A><B><A HREF="node28.html"	>Index</A></B><B><A HREF="node2.html"	>Contents</A></B><HR SIZE=3 WIDTH="75&#37;"><H2><A NAME=SECTION00643000000000000000>3.4.3 Calling of module GEL3D1</A></H2><P><H3><A NAME=SECTION00643100000000000000> Description of the data</A></H3><P>Different options are available to define the geometry, the splitting of the elements and the physical attributes.<P><UL><LI> The <b> geometry</b>: option IOPTM, arrays X,Y and H, functions F1, F2 and F3:<P> <UL><LI> IOPTM = 0: the mesh is of finite difference type with constant step in the  3 directions.  X, Y and H are three real  values (declared as arrays)  which represent the 3 spacing steps in the 3  directions. Every point, M, is referenced by its three indices I, J, and K and has coordinates:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img159.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img160.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img161.gif"></DIV><P>  <LI> IOPTM = 1: the mesh is of finite difference type  with variable  step in the 2 first directions  and constant step in the third direction.  X an Y are two arrays of lengths N1 and N2,  H  is  real (declared as an array); these values  enable us to find the coordinates of each point, M, with indices I, J and K, as follows:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img162.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img163.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img161.gif"></DIV><P>  <LI> IOPTM = 2: the mesh is of finite difference type with variable step in the 3   directions.  X, Y and H are three arrays of lengths  N1, N2 and NB+1; these values  enables us to compute the coordinates of any point M, with indices I, J and K, as follows:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img162.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img163.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img164.gif"></DIV><P>  <LI> IOPTM = 3: the mesh is of finite difference type with variable step in the 2 first directions    and a constant step in the third direction. X and Y are two arrays of length   N1<IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img39.gif">N2 and H is  real (declared as an array); these values are used to compute   the coordinates of any point M, with indices I, J and K, as follows:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img165.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img166.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img161.gif"></DIV><P>  <LI> IOPTM = 4: the mesh is of finite difference type with variable step in the 2 first directions   and a variable step in the third direction.  X and Y are two arrays of length   N1<IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img39.gif">N2 and H is an array of length NB+1; these  values are used to compute the coordinates of any   point M, with indices I, J and K, as follows:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img165.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img166.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img164.gif"></DIV><P>  <LI> IOPTM = 5: a mesh of finite difference type with constant step in the 2 first directions    used to construct the final mesh via the definition of points given by functions    F1, F2 and F3.  X and Y are real (declared as arrays). we obtain the following construction:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img167.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img168.gif"></DIV>   and   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img169.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img170.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img171.gif"></DIV><P>  <LI> IOPTM = 6: a mesh  of finite difference type with variable step in the 2 first directions     used to construct the final mesh via the definitions of the  points given by functions   F1, F2 and F3.  X and Y are two arrays of lengths N1 and N2. We obtain the following construction:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img172.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img173.gif"></DIV>   and   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img169.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img170.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img171.gif"></DIV><P>  <LI> IOPTM = 7:  a mesh of finite difference type with variable step in the first 2 directions     used to construct the final mesh via the definitions of the  points given by functions   F1, F2 and F3.  X and Y are two arrays of lengths N1<IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img39.gif">N2. We obtain the following construction:   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img174.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img175.gif"></DIV>   and   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img169.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img170.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img171.gif"></DIV><P>  <LI> IOPTM = <b>&lt;</b> 0:  a mesh  of finite difference type with variable step in the 3 directions     used to construct the final mesh via the definitions of the  points given by arrays   with indices X, Y and H (without verification).   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img176.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img177.gif"></DIV>   <DIV ALIGN=center><IMG BORDER=0 ALIGN=MIDDLE ALT="" SRC="img178.gif"></DIV></UL><P> <LI> The <b> splitting of elements</b>: option NOPTDE: <UL><LI> NOPTDE = 0:  the result consists of hexahedra formed logically;  <LI> NOPTDE = 1:  each hexahedron is split into 2 pentahedra according to the direction  of the first bisector in the  <b>z=0</b> plane;  <LI> NOPTDE = 2: each hexahedron is split into  2 pentahedra according to the direction  of the other diagonal;  <LI> NOPTDE = 3: we first follow case NOPTDE = 1, then each pentahedron  is split into 3 tetrahedra;  <LI> NOPTDE = 4: the same with option NOPTDE = 2;  <LI> NOPTDE = 5: each hexahedron is split into 5 tetrahedra. </UL><P> <LI> The <b> physical attributes</b>: sub-domain and reference numbers:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -