📄 node49.html
字号:
<TABLE COLS=4 RULES=GROUPS><COL ALIGN=JUSTIFY><COL ALIGN=JUSTIFY><COL ALIGN=CENTER><COL ALIGN=CENTER><TR><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> COBDC1 COBDCL </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Constructs the D.S. <b> BDCL</b> which describes the constrained degrees of freedom. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CONDL1 </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Constructs the D.S. <b> NDL1</b> which contains nodal pointers for the case when the number of degrees of freedom per node is not constant. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR></TABLE><P><LI> Solution of linear systems:<P><TABLE COLS=4 RULES=GROUPS><COL ALIGN=JUSTIFY><COL ALIGN=JUSTIFY><COL ALIGN=CENTER><COL ALIGN=CENTER><TR><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> PREPAC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Calculates the pointers of a skyline matrix. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> ASSMUA </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Assembles a skyline matrix in main memory (m.m.). </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> ASMAPS </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Assembles a skyline matrix in secondary memory (s.m.). </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CHOLPC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Cholesky factorization in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CHOLPS </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Cholesky factorization in s.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR></TABLE><P><TABLE COLS=4 RULES=GROUPS><COL ALIGN=JUSTIFY><COL ALIGN=JUSTIFY><COL ALIGN=CENTER><COL ALIGN=CENTER><TR><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> ASEMBV </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Assembles the RHS vectors in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> ASMBMS </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Assembles the RHS vectors in s.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CLIMPC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Incorporation of boundary conditions in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CLIMPS </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Incorporation of boundary conditions in s.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> DRCHPC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Solution of a linear system by forward- and back-substitution (CHOLESKY factorization) - skyline matrix - in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> DRCHPS </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>As above, but in s.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> PREPGC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Calculation of pointers for a compact matrix (for the conjugate gradient method). </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> ASSAMA </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Assemble a matrix in m.m. in compact storage </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> DRGAPC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Solution of a linear system by forward- and back-substitution (GAUSS factorization) - skyline matrix - in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> DRCRPC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Solution of a linear system by forward- and back-substitution (CROUT factorization) - skyline matrix - in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CROUPC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Crout factorization in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> GAUSPC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Gauss factorization in m.m. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CLIMGC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Impose boundary conditions in m.m. for a linear system with a symmetric or non-symmetric compact matrix. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> SIMPGC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Iterative solution of a linear system by conjugate gradient without preconditioning. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> SSORGC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Iterative solution of a linear system by conjugate gradient with preconditioning by relaxation. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> FANIGC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Incomplete factorization (CHOLESKY, CROUT) of a matrix. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> ICHRGC </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Iterative solution of a linear system by conjugate gradient with preconditioning of incomplete CHOLESKY or CROUT type. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> CONDLU DGRADA </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Solution of a non-symmetric linear system by the Accelerated Double Conjugate Gradient method. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR></TABLE><P><TABLE COLS=4 RULES=GROUPS><COL ALIGN=JUSTIFY><COL ALIGN=JUSTIFY><COL ALIGN=CENTER><COL ALIGN=CENTER><TR><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> RELAX </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Solution of a linear system in m.m. by a relaxation method with automatic search of the optimal parameter. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> PREPAF </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Calculation of pointers for the frontal method. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> FRONT </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Solution by the GAUSS frontal method. </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> </TD><TD VALIGN=BASELINE ALIGN=LEFT></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD></TR><TR><TD VALIGN=BASELINE ALIGN=LEFT> <tt> ADIMFE </tt></TD><TD VALIGN=BASELINE ALIGN=LEFT>Solution of a second order linear problem on a rectangle by RAVIART-THOMAS mixed elements (alternative directions of type UZAWA or ARROW-HURWITZ). </TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP></TD><TD VALIGN=BASELINE ALIGN=CENTER NOWRAP> </TD></TR></TABLE><P><LI> Matrix manipulation:<P><TABLE COLS=4 RULES=GROUPS><COL ALIGN=JUSTIFY><COL ALIGN=JUSTIFY><COL ALIGN=CENTER><COL ALIGN=CENTER>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -