📄 2009-3-12-pku1556.txt
字号:
#include<stdio.h>
#include<string.h>
#include<math.h>
const int MAX=2005;
const double INF=1e20;
//定义边
typedef struct Edge
{
int st;
int ed;
double distance;
}Edge;
Edge edge[MAX];
//定义点
typedef struct Point
{
double x;
double y;
int v;
}Point;
Point p[25][21];
Point pst,ped;
//定义线段
typedef struct LINESEG
{
Point st;
Point ed;
}LINESEG;
//求两点之间的距离
double dist(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
//求两个向量的叉积
double multiply(Point a,Point b,Point c)
{
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
}
//返回最大值
double max(double x,double y)
{
return x>y? x:y;
}
//返回最小值
double min(double x,double y)
{
return x>y? y:x;
}
//判断连个线段是否相交
bool intersect(LINESEG u,LINESEG v)
{
return max(u.st.x,u.ed.x)>=min(v.st.x,v.ed.x)
&&max(v.st.x,v.ed.x)>=min(u.st.x,u.ed.x)
&&max(u.st.y,u.ed.y)>=min(v.st.y,v.ed.y)
&&max(v.st.y,v.ed.y)>=min(u.st.y,u.ed.y)
&&multiply(v.st,u.ed,u.st)*multiply(u.ed,v.ed,u.st)>=0
&&multiply(u.st,v.ed,v.st)*multiply(v.ed,u.ed,v.st)>=0;
}
//判断源点到到(i=2...n)墙之间是否能构成图的边
bool Judge(int n,Point q)
{
int i;
LINESEG L1,L2,L3;
L1.st=pst,L1.ed=q;
for(i=1;i<=n;i++)
{
L2.st=p[i][1],L2.ed=p[i][2];
L3.st=p[i][3],L3.ed=p[i][4];
if(!intersect(L1,L2)&&!intersect(L1,L3))
return false;
}
return true;
}
//判断终点到(i=1...n-1)墙之间是否能构成图的边
bool Judge1(int st,int n,Point q)
{
int i;
LINESEG L1,L2,L3;
L1.st=ped,L1.ed=q;
for(i=st;i<=n;i++)
{
L2.st=p[i][1],L2.ed=p[i][2];
L3.st=p[i][3],L3.ed=p[i][4];
if(!intersect(L1,L2)&&!intersect(L1,L3))
return false;
}
return true;
}
double d[MAX];
//初始化d[u]:用来描述从源点S到u的最短路径上权值的三界!
void Init(int V,int S)
{
int i;
for(i=1;i<=V;i++)
d[i]=INF;//开始的时候设置为无穷大!
d[S]=0;//源点设置为0
}
//Bellman_Ford算法的实现!
bool Bellman_Ford(int V,int E,int S)
{
int i,j;
bool relaxed;//优化
Init(V,S);
for(i=1;i<=V-1;i++)
{
relaxed=true;
for(j=1;j<=E;j++)
if(d[edge[j].ed]>d[edge[j].st]+edge[j].distance)
d[edge[j].ed]=d[edge[j].st]+edge[j].distance,relaxed=false;
if(relaxed)//说明当前这一轮没有进行松弛,那么以后将也不会进行松弛,那么就提前结束!
break;
}
return relaxed;
}
int main()
{
int i,j,k,E,V,n;
double x,y;
while(scanf("%d",&n)&&n!=-1)
{
V=1,E=0,pst.x=0,pst.y=5,pst.v=1;
ped.x=10,ped.y=5;
for(i=1;i<=n;i++)
{
scanf("%lf",&x);
for(j=1;j<=4;j++)
{
scanf("%lf",&y);
p[i][j].x=x,p[i][j].y=y,p[i][j].v=++V;
}
}
ped.v=++V;
//源点到第一个墙构成的边
for(i=1;i<=4;i++)
edge[++E].st=pst.v,edge[E].ed=p[1][i].v,edge[E].distance=dist(pst,p[1][i]);
//终点到第N个墙够成的边
for(i=1;i<=4;i++)
edge[++E].st=p[n][i].v,edge[E].ed=ped.v,edge[E].distance=dist(ped,p[n][i]);
//任何两个墙之间构成的图的边
for(i=1;i<=n-1;i++)
{
for(j=1;j<=4;j++)
for(k=1;k<=4;k++)
edge[++E].st=p[i][j].v,edge[E].ed=p[i+1][k].v,edge[E].distance=dist(p[i][j],p[i+1][k]);
}
//源点到(i=2...n)墙之间构成图的边
for(i=2;i<=n;i++)
{
for(j=1;j<=4;j++)
if(Judge(i-1,p[i][j]))
edge[++E].st=pst.v,edge[E].ed=p[i][j].v,edge[E].distance=dist(pst,p[i][j]);
}
//终点到(i=1...n-1)墙之间构成图的边
for(i=1;i<=n-1;i++)
{
for(j=1;j<=4;j++)
if(Judge1(i+1,n,p[i][j]))
edge[++E].st=p[i][j].v,edge[E].ed=ped.v,edge[E].distance=dist(ped,p[i][j]);
}
//源点到终点构成的图的边
if(Judge(n,ped))
edge[++E].st=pst.v,edge[E].ed=ped.v,edge[E].distance=dist(pst,ped);
//求最短路径算法!
Bellman_Ford(V,E,1);
printf("%.2lf\n",d[V]);
}
return 0;
}
/*
1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1
10.00
10.06
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -