⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 几何模板.txt

📁 ACM中的计算算法题目和原代码! 这里的题目都是PKU上的代码!
💻 TXT
字号:
计算几何模板
/********************************************************************
* COMPUTATIONAL GEOMETRY ROUTINES
* WRITTEN BY : LIU Yu (C) 2003
* GRANT USE FOR NON-COMMERCIAL PURPOSE ONLY
* EDITED BY: COELOLEPID
********************************************************************/
 
// INDEX CONTENT 
//
//   16    叉乘
//   16    两个点的距离
//   16    返回直线 Ax + By + C =0 的系数
//   17    线段
//   17    圆
//   17    两个圆的公共面积
//   18    矩形
//   18    根据下标返回多边形的边
//   19    两个矩形的公共面积
//   20    多边形 ,逆时针或顺时针给出x,y 
//   20    多边形顶点
//   20    多边形的边
//   20    多边形的周长
//   21    判断点是否在线段上
//   21    判断两条线断是否相交,端点重合算相交
//   22    判断两条线断是否平行
//   22    判断两条直线断是否相交
//   22    直线相交的交点
//   23    判断是否简单多边形
//   23    求多边形面积
//   24    判断是否在多边形上
//   24    判断是否在多边形内部
//   25    点阵的凸包,返回一个多边形
 
#i nclude <cmath>
#i nclude <cstdio>
#i nclude <memory.h>
#i nclude <algorithm>
#i nclude <iomanip>
#i nclude <iostream>
using namespace std;
 
typedef double TYPE;
 
#define Abs(x) (((x)>0)?(x):(-(x)))
#define Sgn(x) (((x)<0)?(-1):(1))
#define Max(a,b) (((a)>(b))?(a):(b))
#define Min(a,b) (((a)<(b))?(a):(b))
 
#define Epsilon 1e-10
#define Infinity 1e+10
#define Pi 3.14159265358979323846
 
TYPE Deg2Rad(TYPE deg)
{
    return (deg * Pi / 180.0);
}
 
TYPE Rad2Deg(TYPE rad)
{
    return (rad * 180.0 / Pi);
}
 
TYPE Sin(TYPE deg)
{
    return sin(Deg2Rad(deg));
}
 
TYPE Cos(TYPE deg)
{
    return cos(Deg2Rad(deg));
}
 
TYPE ArcSin(TYPE val)
{
    return Rad2Deg(asin(val));
}
 
TYPE ArcCos(TYPE val)
{
    return Rad2Deg(acos(val));
}
 
TYPE Sqrt(TYPE val)
{
    return sqrt(val);
}
 
struct POINT
{
    TYPE x;
    TYPE y;
    TYPE z;
    POINT() : x(0), y(0), z(0) {};
    POINT(TYPE _x_, TYPE _y_, TYPE _z_ = 0) : x(_x_), y(_y_), z(_z_) {};
};
 
// cross product of (o->a) and (o->b)
// 叉乘
TYPE Cross(const POINT & a, const POINT & b, const POINT & o)
{
    return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
}
 
// planar points' distance
// 两个点的距离
TYPE Distance(const POINT & a, const POINT & b)
{
    return Sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + 
        (a.z - b.z) * (a.z - b.z));
}
 
struct LINE
{
    POINT a;
    POINT b;
    LINE() {};
    LINE(POINT _a_, POINT _b_) : a(_a_), b(_b_) {};
};
 
// 返回直线 Ax + By + C =0 的系数
void Coefficient(const LINE & L, TYPE & A, TYPE & B, TYPE & C)
{
    A = L.b.y - L.a.y;
    B = L.a.x - L.b.x;
    C = L.b.x * L.a.y - L.a.x * L.b.y;
}
 
void Coefficient(const POINT & p,const TYPE a,TYPE & A,TYPE & B,TYPE & C)
{
    A = Cos(a);
    B = Sin(a);
    C = - (p.y * B + p.x * A);
}
 
// 线段
struct SEG
{
    POINT a;
    POINT b;
    SEG() {};
    SEG(POINT _a_, POINT _b_):a(_a_),b(_b_) {};
};
 
// 圆
struct CIRCLE
{
    TYPE x;
    TYPE y;
    TYPE r;
    CIRCLE() {}
    CIRCLE(TYPE _x_, TYPE _y_, TYPE _r_) : x(_x_), y(_y_), r(_r_) {}
};
 
POINT Center(const CIRCLE & circle)
{
    return POINT(circle.x, circle.y);
}
 
TYPE Area(const CIRCLE & circle)
{        
    return Pi * circle.r * circle.r;
}
//两个圆的公共面积
TYPE CommonArea(const CIRCLE & A, const CIRCLE & B)
{
    TYPE area = 0.0;
 
    const CIRCLE & M = (A.r > B.r) ? A : B;
    const CIRCLE & N = (A.r > B.r) ? B : A;
 
    TYPE D = Distance(Center(M), Center(N));
 
    if ((D < M.r + N.r) && (D > M.r - N.r))
    {
        TYPE cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
        TYPE cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
 
        TYPE alpha = 2.0 * ArcCos(cosM);
        TYPE beta = 2.0 * ArcCos(cosN);
 
        TYPE TM = 0.5 * M.r * M.r * Sin(alpha);
        TYPE TN = 0.5 * N.r * N.r * Sin(beta);
 
        TYPE FM = (alpha / 360.0) * Area(M);
        TYPE FN = (beta / 360.0) * Area(N);
 
        area = FM + FN - TM - TN;
    }
    else if (D <= M.r - N.r)
    {
        area = Area(N);
    }
 
    return area;
}
 
// 矩形
//矩形的线段
//        2
//   --------------- b
//   |             | 
// 3 |             | 1
// a --------------- 
//         0
 
struct RECT
{
    POINT a;                                   // 左下点
    POINT b;                                   // 右上点
    RECT() {};
    RECT(const POINT & _a_, const POINT & _b_)
    {
        a = _a_;
        b = _b_;
    }
};
 
//根据下标返回多边形的边
SEG Edge(const RECT & rect, int idx)
{
    SEG edge;
    while (idx < 0) idx += 4;
    switch (idx % 4)
    {
    case 0:
        edge.a = rect.a;
        edge.b = POINT(rect.b.x, rect.a.y);
        break;
    case 1:
        edge.a = POINT(rect.b.x, rect.a.y);
        edge.b = rect.b;
        break;
    case 2:
        edge.a = rect.b;
        edge.b = POINT(rect.a.x, rect.b.y);
        break;
    case 3:
        edge.a = POINT(rect.a.x, rect.b.y);
        edge.b = rect.a;
        break;
    default:
        break;
    }
    return edge;
}
 
TYPE Area(const RECT & rect)
{
    return (rect.b.x - rect.a.x) * (rect.b.y - rect.a.y);
}
// 两个矩形的公共面积
TYPE CommonArea(const RECT & A, const RECT & B)
{
    TYPE area = 0.0;
 
    POINT LL(Max(A.a.x, B.a.x), Max(A.a.y, B.a.y));
    POINT UR(Min(A.b.x, B.b.x), Min(A.b.y, B.b.y));
 
    if ((LL.x <= UR.x) && (LL.y <= UR.y))
    {
        area = Area(RECT(LL, UR));
    }
 
    return area;
}
 
 
// 多边形 ,逆时针或顺时针给出x,y 
struct POLY
{
    int n;        //n个点
    TYPE * x;     //x,y为点的指针,首尾必须重合
    TYPE * y;
    POLY() : n(0), x(NULL), y(NULL) {};
    POLY(int _n_, const TYPE * _x_, const TYPE * _y_)
    {         
        n = _n_;
 
        x = new TYPE[n + 1];
        memcpy(x, _x_, n*sizeof(TYPE));
        x[n] = _x_[0];
 
        y = new TYPE[n + 1];
        memcpy(y, _y_, n*sizeof(TYPE));
        y[n] = _y_[0];
    }
};
//多边形顶点
POINT Vertex(const POLY & poly, int idx)
{
    idx %= poly.n;
    return POINT(poly.x[idx], poly.y[idx]);
}
//多边形的边
SEG Edge(const POLY & poly, int idx)
{
    idx %= poly.n;
    return SEG(POINT(poly.x[idx], poly.y[idx]), 
        POINT(poly.x[idx + 1], poly.y[idx + 1]));
} 
 
 
 
 
//多边形的周长
TYPE Perimeter(const POLY & poly)
{
    TYPE p = 0.0;
    for (int i = 0; i < poly.n; i++)
        p = p + Distance(Vertex(poly, i), Vertex(poly, i + 1));
    return p;
}
 
bool IsEqual(TYPE a, TYPE b)
{
    return (Abs(a - b) < Epsilon);
}
 
bool IsEqual(const POINT & a, const POINT & b)
{
    return (IsEqual(a.x, b.x) && IsEqual(a.y, b.y));
}
 
bool IsEqual(const LINE & A, const LINE & B)
{
    TYPE A1, B1, C1;
    TYPE A2, B2, C2;
 
    Coefficient(A, A1, B1, C1);
    Coefficient(B, A2, B2, C2);
 
    return IsEqual(A1 * B2, A2 * B1) && 
        IsEqual(A1 * C2, A2 * C1) &&
        IsEqual(B1 * C2, B2 * C1);
}
 
// 判断点是否在线段上
bool IsOnSeg(const SEG & seg, const POINT & p)
{
    return (IsEqual(p, seg.a) || IsEqual(p, seg.b)) ||
        (((p.x - seg.a.x) * (p.x - seg.b.x) < 0 || 
        (p.y - seg.a.y) * (p.y - seg.b.y) < 0) &&
        (IsEqual(Cross(seg.b, p, seg.a), 0)));
}
//判断两条线断是否相交,端点重合算相交
bool IsIntersect(const SEG & u, const SEG & v)
{
    return (Cross(v.a, u.b, u.a) * Cross(u.b, v.b, u.a) >= 0) &&
        (Cross(u.a, v.b, v.a) * Cross(v.b, u.b, v.a) >= 0) &&
        (Max(u.a.x, u.b.x) >= Min(v.a.x, v.b.x)) && 
        (Max(v.a.x, v.b.x) >= Min(u.a.x, u.b.x)) && 
        (Max(u.a.y, u.b.y) >= Min(v.a.y, v.b.y)) && 
        (Max(v.a.y, v.b.y) >= Min(u.a.y, u.b.y));
}
 
//判断两条线断是否平行
bool IsParallel(const LINE & A, const LINE & B)
{
    TYPE A1, B1, C1;
    TYPE A2, B2, C2;
 
    Coefficient(A, A1, B1, C1);
    Coefficient(B, A2, B2, C2);
 
    return (A1 * B2 == A2 * B1) && 
        ((A1 * C2 != A2 * C1) || (B1 * C2 != B2 * C1));
}
//判断两条直线断是否相交
bool IsIntersect(const LINE & A, const LINE & B)
{
    return !IsParallel(A, B);
}
//直线相交的交点
POINT Intersection(const LINE & A, const LINE & B)
{
    TYPE A1, B1, C1;
    TYPE A2, B2, C2;
 
    Coefficient(A, A1, B1, C1);
    Coefficient(B, A2, B2, C2);
 
    POINT I(0, 0);
 
    I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
    I.y =   (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
 
    return I;
}
 
 
bool IsInCircle(const CIRCLE & circle, const RECT & rect)
{
    return (circle.x - circle.r >= rect.a.x) &&
        (circle.x + circle.r <= rect.b.x) &&
        (circle.y - circle.r >= rect.a.y) &&
        (circle.y + circle.r <= rect.b.y);
}
 
//判断是否简单多边形
bool IsSimple(const POLY & poly)
{
    if (poly.n < 3)
        return false;
    SEG L1, L2;
    for (int i = 0; i < poly.n - 1; i++)
    {
        L1 = Edge(poly, i);
        for (int j = i + 1; j < poly.n; j++)
        {
            L2 = Edge(poly, j);
            if (j == i + 1)
            {
                if (IsOnSeg(L1, L2.b) || IsOnSeg(L2, L1.a))
                    return false;                                
            }
            else if (j == poly.n - i - 1)
            {
                if (IsOnSeg(L1, L2.a) || IsOnSeg(L2, L1.b))
                    return false;                                
            }
           else
            {
                if (IsIntersect(L1, L2)) 
                    return false;
            }
        } // for j
    } // for i
    return true;
}
 
//求多边形面积
TYPE Area(const POLY & poly)
{
    if (poly.n < 3) return TYPE(0);
    double s = poly.y[0] * (poly.x[poly.n - 1] - poly.x[1]);
    for (int i = 1; i < poly.n; i++)
    {
        s += poly.y[i] * (poly.x[i - 1] - poly.x[(i + 1) % poly.n]);
    }
    return s/2;
}
 
//判断是否在多边形上
bool IsOnPoly(const POLY & poly, const POINT & p)
{
    for (int i = 0; i < poly.n; i++)
    {
        if (IsOnSeg(Edge(poly, i), p))
        {
            return true;
        }
    }
    return false;
}
 
//判断是否在多边形内部
bool IsInPoly(const POLY & poly, const POINT & p) 
{
    SEG L(p, POINT(Infinity, p.y));
 
    int count = 0;
    for (int i = 0; i < poly.n; i++)
    {
        SEG S = Edge(poly, i);
        if (IsOnSeg(S, p))
        {
            return false;                        //如果想让在poly上则返回 true,
            //则改为true 
        }
        if (!IsEqual(S.a.y, S.b.y))
        {
            POINT & q = (S.a.y > S.b.y)?(S.a):(S.b);
            if (IsOnSeg(L, q))
            {
                ++count;
            }
            else if (!IsOnSeg(L, S.a) && !IsOnSeg(L, S.b) && IsIntersect(S, L))
            {
                ++count;
            }
        }
    }
    return (count % 2 != 0);
}
 
// 点阵的凸包,返回一个多边形
POLY ConvexHull(const POINT * set, int n)            // 不适用于点少于三个的情况
{
    POINT * points = new POINT[n];
    memcpy(points, set, n * sizeof(POINT));
 
    TYPE * X = new TYPE[n];
    TYPE * Y = new TYPE[n];
 
    int i, j, k = 0, top = 2;
    for(i = 1; i < n; i++)
    {
        if ((points[i].y < points[k].y) ||
            ((points[i].y == points[k].y) &&
            (points[i].x < points[k].x)))
        {
            k = i;
        }
    }
 
    std::swap(points[0], points[k]);
 
    for (i = 1; i < n - 1; i++)
    {
        k = i;
        for (j = i + 1; j < n; j++)
        {
            if ((Cross(points[j], points[k], points[0]) > 0) ||
                ((Cross(points[j], points[k], points[0]) == 0) &&
                (Distance(points[0], points[j]) < Distance(points[0], points[k]))))
            {
                k = j;
            }
        }
        std::swap(points[i], points[k]);
    }
 
    X[0] = points[0].x; Y[0] = points[0].y;
    X[1] = points[1].x; Y[1] = points[1].y;
 
    X[2] = points[2].x; Y[2] = points[2].y;
 
    for (i = 3; i < n; i++)
    {
        while (Cross(points[i], POINT(X[top], Y[top]), 
            POINT(X[top - 1], Y[top - 1])) >= 0)
        {
            top--;
        }
        ++top;
        X[top] = points[i].x;
        Y[top] = points[i].y;
    }
 
    delete [] points;
 
    POLY poly(++top, X, Y);
 
    delete [] X;
    delete [] Y;
 
 
    return poly;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -