⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spring-beans-2.0.dtd

📁 如图1所示
💻 DTD
📖 第 1 页 / 共 2 页
字号:
<!--
	Spring XML Beans DTD, version 2.0
	Authors: Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop

	This defines a simple and consistent way of creating a namespace
	of JavaBeans objects, managed by a Spring BeanFactory, read by
	XmlBeanDefinitionReader (with DefaultBeanDefinitionDocumentReader).

	This document type is used by most Spring functionality, including
	web application contexts, which are based on bean factories.

	Each "bean" element in this document defines a JavaBean.
	Typically the bean class is specified, along with JavaBean properties
	and/or constructor arguments.

	A bean instance can be a "singleton" (shared instance) or a "prototype"
	(independent instance). Further scopes can be provided by extended
	bean factories, for example in a web environment.

	References among beans are supported, that is, setting a JavaBean property
	or a constructor argument to refer to another bean in the same factory
	(or an ancestor factory).

	As alternative to bean references, "inner bean definitions" can be used.
	Singleton flags of such inner bean definitions are effectively ignored:
	Inner beans are typically anonymous prototypes.

	There is also support for lists, sets, maps, and java.util.Properties
	as bean property types or constructor argument types.

	For simple purposes, this DTD is sufficient. As of Spring 2.0,
	XSD-based bean definitions are supported as more powerful alternative.

	XML documents that conform to this DTD should declare the following doctype:

	<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
			"http://www.springframework.org/dtd/spring-beans-2.0.dtd">
-->


<!--
	The document root. A document can contain bean definitions only,
	imports only, or a mixture of both (typically with imports first).
-->
<!ELEMENT beans (
	description?,
	(import | alias | bean)*
)>

<!--
	Default values for all bean definitions. Can be overridden at
	the "bean" level. See those attribute definitions for details.
-->
<!ATTLIST beans default-lazy-init (true | false) "false">
<!ATTLIST beans default-merge (true | false) "false">
<!ATTLIST beans default-autowire (no | byName | byType | constructor | autodetect) "no">
<!ATTLIST beans default-dependency-check (none | objects | simple | all) "none">
<!ATTLIST beans default-init-method CDATA #IMPLIED>
<!ATTLIST beans default-destroy-method CDATA #IMPLIED>

<!--
	Element containing informative text describing the purpose of the enclosing
	element. Always optional.
	Used primarily for user documentation of XML bean definition documents.
-->
<!ELEMENT description (#PCDATA)>


<!--
	Specifies an XML bean definition resource to import.
-->
<!ELEMENT import EMPTY>

<!--
	The relative resource location of the XML bean definition file to import,
	for example "myImport.xml" or "includes/myImport.xml" or "../myImport.xml".
-->
<!ATTLIST import resource CDATA #REQUIRED>


<!--
	Defines an alias for a bean, which can reside in a different definition file.
-->
<!ELEMENT alias EMPTY>

<!--
	The name of the bean to define an alias for.
-->
<!ATTLIST alias name CDATA #REQUIRED>

<!--
	The alias name to define for the bean.
-->
<!ATTLIST alias alias CDATA #REQUIRED>

<!--
	Allows for arbitrary metadata to be attached to a bean definition.
-->
<!ELEMENT meta EMPTY>

<!--
	Specifies the key name of the metadata parameter being defined.
-->
<!ATTLIST meta key CDATA #REQUIRED>

<!--
	Specifies the value of the metadata parameter being defined as a String.
-->
<!ATTLIST meta value CDATA #REQUIRED>

<!--
	Defines a single (usually named) bean.

	A bean definition may contain nested tags for constructor arguments,
	property values, lookup methods, and replaced methods. Mixing constructor
	injection and setter injection on the same bean is explicitly supported.
-->
<!ELEMENT bean (
	description?,
	(meta | constructor-arg | property | lookup-method | replaced-method)*
)>

<!--
	Beans can be identified by an id, to enable reference checking.

	There are constraints on a valid XML id: if you want to reference your bean
	in Java code using a name that's illegal as an XML id, use the optional
	"name" attribute. If neither is given, the bean class name is used as id
	(with an appended counter like "#2" if there is already a bean with that name).
-->
<!ATTLIST bean id ID #IMPLIED>

<!--
	Optional. Can be used to create one or more aliases illegal in an id.
	Multiple aliases can be separated by any number of spaces, commas, or
	semi-colons (or indeed any mixture of the three).
-->
<!ATTLIST bean name CDATA #IMPLIED>

<!--
	Each bean definition must specify the fully qualified name of the class,
	except if it serves only as a parent definition for child bean definitions.
-->
<!ATTLIST bean class CDATA #IMPLIED>

<!--
	Optionally specify a parent bean definition.

	Will use the bean class of the parent if none specified, but can
	also override it. In the latter case, the child bean class must be
	compatible with the parent, i.e. accept the parent's property values
	and constructor argument values, if any.

	A child bean definition will inherit constructor argument values,
	property values and method overrides from the parent, with the option
	to add new values. If init method, destroy method, factory bean and/or factory
	method are specified, they will override the corresponding parent settings.

	The remaining settings will always be taken from the child definition:
	depends on, autowire mode, dependency check, scope, lazy init.
-->
<!ATTLIST bean parent CDATA #IMPLIED>

<!--
	The scope of this bean: typically "singleton" (one shared instance,
	which will be returned by all calls to getBean() with the id),
	or "prototype" (independent instance resulting from each call to
	getBean(). Default is "singleton".

	Singletons are most commonly used, and are ideal for multi-threaded
	service objects. Further scopes, such as "request" or "session",
	might be supported by extended bean factories (for example, in a
	web environment).

	Note: This attribute will not be inherited by child bean definitions.
	Hence, it needs to be specified per concrete bean definition.

	Inner bean definitions inherit the singleton status of their containing
	bean definition, unless explicitly specified: The inner bean will be a
	singleton if the containing bean is a singleton, and a prototype if
	the containing bean has any other scope.
-->
<!ATTLIST bean scope CDATA #IMPLIED>

<!--
	Is this bean "abstract", i.e. not meant to be instantiated itself but
	rather just serving as parent for concrete child bean definitions.
	Default is "false". Specify "true" to tell the bean factory to not try to
	instantiate that particular bean in any case.

	Note: This attribute will not be inherited by child bean definitions.
	Hence, it needs to be specified per abstract bean definition.
-->
<!ATTLIST bean abstract (true | false) #IMPLIED>

<!--
	If this bean should be lazily initialized.
	If false, it will get instantiated on startup by bean factories
	that perform eager initialization of singletons.

	Note: This attribute will not be inherited by child bean definitions.
	Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean lazy-init (true | false | default) "default">

<!--
	Optional attribute controlling whether to "autowire" bean properties.
	This is an automagical process in which bean references don't need to be coded
	explicitly in the XML bean definition file, but Spring works out dependencies.

	There are 5 modes:

	1. "no"
	The traditional Spring default. No automagical wiring. Bean references
	must be defined in the XML file via the <ref> element. We recommend this
	in most cases as it makes documentation more explicit.

	2. "byName"
	Autowiring by property name. If a bean of class Cat exposes a dog property,
	Spring will try to set this to the value of the bean "dog" in the current factory.
	If there is no matching bean by name, nothing special happens;
	use dependency-check="objects" to raise an error in that case.

	3. "byType"
	Autowiring if there is exactly one bean of the property type in the bean factory.
	If there is more than one, a fatal error is raised, and you can't use byType
	autowiring for that bean. If there is none, nothing special happens;
	use dependency-check="objects" to raise an error in that case.

	4. "constructor"
	Analogous to "byType" for constructor arguments. If there isn't exactly one bean
	of the constructor argument type in the bean factory, a fatal error is raised.

	5. "autodetect"
	Chooses "constructor" or "byType" through introspection of the bean class.
	If a default constructor is found, "byType" gets applied.

	The latter two are similar to PicoContainer and make bean factories simple to
	configure for small namespaces, but doesn't work as well as standard Spring
	behaviour for bigger applications.

	Note that explicit dependencies, i.e. "property" and "constructor-arg" elements,
	always override autowiring. Autowire behavior can be combined with dependency
	checking, which will be performed after all autowiring has been completed.

	Note: This attribute will not be inherited by child bean definitions.
	Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean autowire (no | byName | byType | constructor | autodetect | default) "default">

<!--
	Optional attribute controlling whether to check whether all this
	beans dependencies, expressed in its properties, are satisfied.
	Default is no dependency checking.

	"simple" type dependency checking includes primitives and String;
	"objects" includes collaborators (other beans in the factory);
	"all" includes both types of dependency checking.

	Note: This attribute will not be inherited by child bean definitions.
	Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean dependency-check (none | objects | simple | all | default) "default">

<!--
	The names of the beans that this bean depends on being initialized.
	The bean factory will guarantee that these beans get initialized before.

	Note that dependencies are normally expressed through bean properties or
	constructor arguments. This property should just be necessary for other kinds
	of dependencies like statics (*ugh*) or database preparation on startup.

	Note: This attribute will not be inherited by child bean definitions.
	Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean depends-on CDATA #IMPLIED>

<!--
	Indicates whether or not this bean should be considered when looking
	for matching candidates to satisfy another bean's autowiring requirements.
	Note that this does not affect explicit references by name, which will get
	resolved even if the specified bean is not marked as an autowire candidate.
-->
<!ATTLIST bean autowire-candidate (true | false) #IMPLIED>

<!--
	Optional attribute for the name of the custom initialization method
	to invoke after setting bean properties. The method must have no arguments,
	but may throw any exception.
-->
<!ATTLIST bean init-method CDATA #IMPLIED>

<!--
	Optional attribute for the name of the custom destroy method to invoke
	on bean factory shutdown. The method must have no arguments,
	but may throw any exception.

	Note: Only invoked on beans whose lifecycle is under full control
	of the factory - which is always the case for singletons, but not
	guaranteed for any other scope.
-->
<!ATTLIST bean destroy-method CDATA #IMPLIED>

<!--
	Optional attribute specifying the name of a factory method to use to
	create this object. Use constructor-arg elements to specify arguments
	to the factory method, if it takes arguments. Autowiring does not apply
	to factory methods.

	If the "class" attribute is present, the factory method will be a static
	method on the class specified by the "class" attribute on this bean
	definition. Often this will be the same class as that of the constructed
	object - for example, when the factory method is used as an alternative
	to a constructor. However, it may be on a different class. In that case,
	the created object will *not* be of the class specified in the "class"
	attribute. This is analogous to FactoryBean behavior.

	If the "factory-bean" attribute is present, the "class" attribute is not
	used, and the factory method will be an instance method on the object
	returned from a getBean call with the specified bean name. The factory
	bean may be defined as a singleton or a prototype.

	The factory method can have any number of arguments. Autowiring is not
	supported. Use indexed constructor-arg elements in conjunction with the
	factory-method attribute.

	Setter Injection can be used in conjunction with a factory method.
	Method Injection cannot, as the factory method returns an instance,
	which will be used when the container creates the bean.
-->
<!ATTLIST bean factory-method CDATA #IMPLIED>

<!--
	Alternative to class attribute for factory-method usage.
	If this is specified, no class attribute should be used.
	This should be set to the name of a bean in the current or
	ancestor factories that contains the relevant factory method.
	This allows the factory itself to be configured using Dependency
	Injection, and an instance (rather than static) method to be used.
-->

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -