📄 ake12blsa.cpp
字号:
/*
* No matter where you got this code from, be aware that MIRACL is NOT
* free software. For commercial use a license is required.
* See www.shamus.ie
*
Scott's AKE Client/Server testbed
See http://eprint.iacr.org/2002/164
Compile as
cl /O2 /GX /DZZNS=12 ake12blsa.cpp zzn12.cpp zzn6a.cpp ecn2.cpp zzn2.cpp big.cpp zzn.cpp ecn.cpp miracl.lib
using COMBA build
Barreto-Lynn-Scott Curve - Ate pairing
The curve generated is generated from a 64-bit x parameter
This version implements that Ate pairing
This is implemented on the Barreto-Lynn-Scott k=12, rho=1.5 pairing friendly curve
NOTE: Irreducible polynomial is of the form x^6+sqrt(-2)
See blsk12.cpp for a program to generate suitable curves
Modified to prevent sub-group confinement attack
*/
#include <iostream>
#include <fstream>
#include <string.h>
#include "ecn.h"
#include <ctime>
#include "ecn2.h"
#include "zzn12.h"
using namespace std;
Miracl precision(16,0);
/*
extern "C"
{
int fpc=0;
int fpa=0;
int fpx=0;
}
*/
#ifdef MR_AFFINE_ONLY
#define AFFINE
#else
#define PROJECTIVE
#endif
// Using SHA-256 as basic hash algorithm
#define HASH_LEN 32
//
// Ate Pairing Code
//
void set_frobenius_constant(ZZn12 &X)
{
ZZn12 x;
Big p=get_modulus();
x.seti((ZZn6)1);
X=pow(x,p);
}
//
// Line from A to destination C. Let A=(x,y)
// Line Y-slope.X-c=0, through A, so intercept c=y-slope.x
// Line Y-slope.X-y+slope.x = (Y-y)-slope.(X-x) = 0
// Now evaluate at Q -> return (Qy-y)-slope.(Qx-x)
//
ZZn12 line(ECn2& A,ECn2& C,ZZn2& slope,ZZn& Qx,ZZn& Qy)
{
ZZn12 w;
ZZn6 nn,dd;
ZZn2 X,Y;
#ifdef AFFINE
A.get(X,Y);
dd.set(slope*Qx,Y-slope*X);
nn.set((ZZn2)-Qy);
w.set(nn,dd);
#endif
#ifdef PROJECTIVE
ZZn2 Z,Z2,ZZ,ZZZ;
A.get(X,Y,Z);
C.getZ(Z2);
ZZ=Z*Z;
ZZZ=ZZ*Z;
dd.set((ZZZ*slope)*Qx,Z2*Y-Z*X*slope);
nn.set((ZZn2)-(ZZZ*Z2)*Qy);
w.set(nn,dd);
#endif
return w;
}
//
// Add A=A+B (or A=A+A)
// Return line function value
//
ZZn12 g(ECn2& A,ECn2& B,ZZn& Qx,ZZn& Qy)
{
ZZn2 lam;
ZZn12 r;
ECn2 P=A;
// Evaluate line from A
A.add(B,lam);
if (A.iszero()) return (ZZn12)1;
r=line(P,A,lam,Qx,Qy);
//cout << "r= " << r << endl;
return r;
}
//
// Ate Pairing - note denominator elimination has been applied
//
// P is a point of order q. Q(x,y) is a point of order q.
// Note that P is a point on the sextic twist of the curve over Fp^2, Q(x,y) is a point on the
// curve over the base field Fp
//
BOOL fast_pairing(ECn2& P,ZZn& Qx,ZZn& Qy,Big &x,ZZn12 &X,ZZn6& res)
{
ECn2 A;
int i,nb;
Big n;
ZZn12 w,r,a,b,c,rp;
n=3*x+1; // t-1
A=P; // remember A
nb=bits(n);
r=1;
//fpc=fpa=fpx=0;
for (i=nb-2;i>=0;i--)
{
r*=r;
r*=g(A,A,Qx,Qy);
if (bit(n,i))
r*=g(A,P,Qx,Qy);
}
//cout << "Miller fpa= " << fpa << endl;
//cout << "Miller fpc= " << fpc << endl;
//cout << "Miller fpx= " << fpx << endl;
//fpa=fpc=fpx=0;
if (r.iszero()) return FALSE;
w=r;
r.conj();
r/=w; // r^(p^6-1)
r.mark_as_unitary();
w=r;
r.powq(X); r.powq(X);
r*=w; // r^[(p^6-1)*(p^2+1)]
// New idea..
// Calculate final exponentiation
// Does not require multi-exponentiation, but total exponent length is the same.
// Also does not need precomputation (x is sparse).
//
a=pow(r,3*x); // A = r^{3x}
a=pow(a,x); // A = r^(3x^2)
b=a;
b.powq(X);
b.powq(X); // A^{p^2}
rp=r*b; // r.A^{p^2}
b.powq(X);
rp*=b; // r.A^{p^2}.A^{p^3}
a=pow(a,3*x); // B = A^{3*x}
b=a;
b.powq(X);
b.powq(X);
rp*=b; // r.A^{p^2}.A^{p^3}*B^{p^2}
w=(a*a);
rp*=w; // r.A^{p^2}.A^{p^3}*B^{p^2}.B^2
w.powq(X);
rp*=w; // r.A^{p^2}.A^{p^3}*B^{p^2}.B^2.(B^2)^p
a=pow(a,3*x); // C=B^{3*x}
b=a;
b.powq(X);
rp*=b; // r.A^{p^2}.A^{p^3}*B^{p^2}.B^2.(B^2)^p.C^p
b=a*a*a;
rp*=b; // r.A^{p^2}.A^{p^3}*B^{p^2}.B^2.(B^2)^p.C^p.C^3
a=pow(a,3*x);
r=rp*a; // r.A^{p^2}.A^{p^3}*B^{p^2}.B^2.(B^2)^p.C^p.C^3.C^{3*x}
//cout << "FE fpc= " << fpc << endl;
//cout << "FE fpa= " << fpa << endl;
//cout << "FE fpx= " << fpx << endl;
//fpa=fpc=fpx=0;
res= real(r); // compress to half size...
return TRUE;
}
//
// ecap(.) function
//
BOOL ecap(ECn2& P,ECn& Q,Big& x,ZZn12 &X,ZZn6& r)
{
BOOL Ok;
Big xx,yy;
ZZn Qx,Qy;
Q.get(xx,yy); Qx=xx; Qy=yy;
Ok=fast_pairing(P,Qx,Qy,x,X,r);
if (Ok) return TRUE;
return FALSE;
}
//
// Hash functions
//
Big H1(char *string)
{ // Hash a zero-terminated string to a number < modulus
Big h,p;
char s[HASH_LEN];
int i,j;
sha256 sh;
shs256_init(&sh);
for (i=0;;i++)
{
if (string[i]==0) break;
shs256_process(&sh,string[i]);
}
shs256_hash(&sh,s);
p=get_modulus();
h=1; j=0; i=1;
forever
{
h*=256;
if (j==HASH_LEN) {h+=i++; j=0;}
else h+=s[j++];
if (h>=p) break;
}
h%=p;
return h;
}
Big H2(ZZn6 x)
{ // Hash an Fp6 to a big number
sha256 sh;
ZZn2 u,v,w;
ZZn h,l;
Big a,hash,p,xx[6];
char s[HASH_LEN];
int i,j,m;
shs256_init(&sh);
x.get(u,v,w);
u.get(l,h);
xx[0]=l; xx[1]=h;
v.get(l,h);
xx[2]=l; xx[3]=h;
w.get(l,h);
xx[4]=l; xx[5]=h;
for (i=0;i<6;i++)
{
a=xx[i];
while (a>0)
{
m=a%256;
shs256_process(&sh,m);
a/=256;
}
}
shs256_hash(&sh,s);
hash=from_binary(HASH_LEN,s);
return hash;
}
// Hash and map a Server Identity to a curve point E_(Fp2)
ECn2 hash_and_map2(char *ID,Big cf)
{
int i;
ECn2 S,SS;
ZZn2 X;
Big x0=H1(ID);
forever
{
x0+=1;
X.set((ZZn)1,(ZZn)x0);
if (!S.set(X)) continue;
break;
}
S*=cf;
S.norm();
return S;
}
// Hash and map a Client Identity to a curve point E_(Fp) of order q
ECn hash_and_map(char *ID)
{
ECn Q;
Big x0=H1(ID);
while (!Q.set(x0,x0)) x0+=1;
return Q;
}
int main()
{
miracl* mip=&precision;
ECn Alice,Bob,sA,sB;
ECn2 Server,sS;
ZZn6 sp,ap,bp,res;
ZZn12 X;
Big a,b,s,ss,p,q,x,y,B,cf,t;
int i,bits,A;
time_t seed;
mip->IOBASE=16;
x= (char *)"4800000000052FDE"; // found by BLSK12.CPP
p=243*pow(x,6)+324*pow(x,5)+135*pow(x,4)+18*pow(x,3)+3*x*x+3*x+1;
t=3*x+2;
q=81*pow(x,4)+108*pow(x,3)+45*x*x+6*x+1;
cf=3*x*x*(p+t)+1;
modulo(p);
set_frobenius_constant(X);
cout << "Initialised... " << endl;
time(&seed);
irand((long)seed);
#ifdef AFFINE
ecurve((Big)0,(Big)1,p,MR_AFFINE);
#endif
#ifdef PROJECTIVE
ecurve((Big)0,(Big)1,p,MR_PROJECTIVE);
#endif
mip->IOBASE=16;
mip->TWIST=TRUE; // map Server to point on twisted curve E(Fp2)
ss=rand(q); // TA's super-secret
cout << "Mapping Server ID to point" << endl;
Server=hash_and_map2((char *)"Server",cf);
cout << "Mapping Alice & Bob ID's to points" << endl;
Alice=hash_and_map((char *)"Alice");
Bob= hash_and_map((char *)"Robert");
cout << "Alice, Bob and the Server visit Trusted Authority" << endl;
sS=ss*Server;
sS.norm();
sA=ss*Alice;
sB=ss*Bob;
cout << "Alice and Server Key Exchange" << endl;
a=rand(q); // Alice's random number
s=rand(q); // Server's random number
// for (i=0;i<1000;i++)
if (!ecap(Server,sA,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
ap=powl(res,a);
if (!ecap(sS,Alice,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=powl(res,s);
cout << "Alice Key= " << H2(powl(sp,a)) << endl;
cout << "Server Key= " << H2(powl(ap,s)) << endl;
cout << "Bob and Server Key Exchange" << endl;
b=rand(q); // Bob's random number
s=rand(q); // Server's random number
if (!ecap(Server,sB,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
bp=powl(res,b);
if (!ecap(sS,Bob,x,X,res)) cout << "Trouble" << endl;
if (powl(res,q)!=(ZZn6)1)
{
cout << "Wrong group order - aborting" << endl;
exit(0);
}
sp=powl(res,s);
cout << "Bob's Key= " << H2(powl(sp,b)) << endl;
cout << "Server Key= " << H2(powl(bp,s)) << endl;
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -