📄 sdhcslot.cpp
字号:
*pcps = GetPowerState();
break;
}
case SDHCDSetSlotPowerState: {
DEBUGCHK(cbData == sizeof(CEDEVICE_POWER_STATE));
PCEDEVICE_POWER_STATE pcps = (PCEDEVICE_POWER_STATE) pData;
SetPowerState(*pcps);
break;
}
case SDHCDWakeOnSDIOInterrupts: {
DEBUGCHK(cbData == sizeof(BOOL));
PBOOL pfWake = (PBOOL) pData;
if (m_fCanWakeOnSDIOInterrupts) {
DWORD dwWakeupControl = m_dwDefaultWakeupControl;
if (*pfWake) {
dwWakeupControl |= WAKEUP_INTERRUPT;
}
m_bWakeupControl = (BYTE) dwWakeupControl;
}
else {
status = SD_API_STATUS_UNSUCCESSFUL;
}
break;
}
case SDHCDGetSlotInfo: {
DEBUGCHK(cbData == sizeof(SDCARD_HC_SLOT_INFO));
PSDCARD_HC_SLOT_INFO pSlotInfo = (PSDCARD_HC_SLOT_INFO) pData;
status = GetSlotInfo(pSlotInfo);
break;
}
default:
status = SD_API_STATUS_INVALID_PARAMETER;
}
return status;
}
DWORD
CSDHCSlotBase::DetermineMaxClockRate(
)
{
DEBUGCHK(m_pregDevice->IsOK());
// We allow the registry to override what is in the capabilities register.
DWORD dwMaxClockRate = m_pregDevice->ValueDW(SDHC_FREQUENCY_KEY);
if (dwMaxClockRate == 0) {
SSDHC_CAPABILITIES caps = GetCapabilities();
dwMaxClockRate = caps.bits.ClkFreq * 1000000;
if (dwMaxClockRate == 0) {
// No clock frequency specified. Use the highest possible that
// could have been specified so that a working clock divisor
// will be chosen.
dwMaxClockRate = SDHC_MAX_CLOCK_FREQUENCY;
DEBUGMSG(SDCARD_ZONE_ERROR, (TEXT("SDHC: No base clock frequency specified\n")));
DEBUGMSG(SDCARD_ZONE_ERROR, (TEXT("SDHC: Using default frequency of %u\n"),
dwMaxClockRate));
}
}
return dwMaxClockRate;
}
DWORD
CSDHCSlotBase::DetermineMaxBlockLen(
)
{
static const USHORT sc_rgusBlockLen[] = {
SDHC_CAPABILITIES_MAX_BLOCK_LENGTH_0,
SDHC_CAPABILITIES_MAX_BLOCK_LENGTH_1,
SDHC_CAPABILITIES_MAX_BLOCK_LENGTH_2
};
SSDHC_CAPABILITIES caps = GetCapabilities();
// Determine the maximum block length
DEBUGCHK(caps.bits.MaxBlockLen < dim(sc_rgusBlockLen));
DWORD dwMaxBlockLen = sc_rgusBlockLen[caps.bits.MaxBlockLen];
DEBUGCHK(dwMaxBlockLen <= SDHC_MAX_BLOCK_LENGTH);
return dwMaxBlockLen;
}
DWORD
CSDHCSlotBase::DetermineTimeoutControl(
)
{
// We try to come as close to the desired timeout without going below it.
DEBUGCHK(m_pregDevice->IsOK());
SSDHC_CAPABILITIES caps = GetCapabilities();
// Determine the DAT line timeout divisor.
// We allow the registry to override what is in the capabilities register.
DWORD dwTimeoutClock = m_pregDevice->ValueDW(SDHC_TIMEOUT_FREQUENCY_KEY);
if (dwTimeoutClock == 0) {
dwTimeoutClock = caps.bits.TOFreq * 1000;
if (dwTimeoutClock == 0) {
dwTimeoutClock = SDHC_MAX_CLOCK_FREQUENCY;
DEBUGMSG(SDCARD_ZONE_ERROR,
(_T("SDHC: No timeout frequency specified. Using default of %u\n"),
dwTimeoutClock));
}
else if (caps.bits.TimeoutUnit == 1) {
// listing is in MHz, not KHz
dwTimeoutClock *= 1000;
}
}
DEBUGCHK(dwTimeoutClock != 0);
DWORD dwTimeoutInMS = m_pregDevice->ValueDW(SDHC_TIMEOUT_KEY,
SDHC_DEFAULT_TIMEOUT);
DOUBLE dTimeoutControl = SdhcTimeoutSecondsToControl(dwTimeoutClock,
dwTimeoutInMS / 1000.0);
DWORD dwTimeoutControl;
if (dTimeoutControl < 0) {
dwTimeoutControl = 0;
}
else {
dTimeoutControl = ceil(dTimeoutControl);
dwTimeoutControl= (DWORD) dTimeoutControl;
}
dwTimeoutControl = min(dwTimeoutControl, SDHC_TIMEOUT_CONTROL_MAX);
#ifdef DEBUG
{
TCHAR szTimeout[4];
DOUBLE dActualTimeout = SdhcTimeoutControlToSeconds(dwTimeoutClock,
dwTimeoutControl);
_sntprintf(szTimeout, dim(szTimeout), _T("%0.1f"), dActualTimeout);
DEBUGCHK(szTimeout[dim(szTimeout) - 1] == 0);
szTimeout[dim(szTimeout) - 1] = 0; // Null-terminate
DEBUGMSG(SDCARD_ZONE_INIT, (_T("SDHC: Using timeout control value of 0x%x for %s seconds\n"),
dwTimeoutControl, szTimeout));
}
#endif
dwTimeoutControl = 0xE;
return dwTimeoutControl;
}
DWORD
CSDHCSlotBase::DetermineWakeupSources(
)
{
DEBUGCHK(m_pregDevice->IsOK());
DWORD dwWakeupSources = m_pregDevice->ValueDW(SDHC_WAKEUP_SOURCES_KEY);
dwWakeupSources &= WAKEUP_ALL_SOURCES;
// Waking on SDIO interrupts must be enabled by the bus driver.
dwWakeupSources &= ~WAKEUP_INTERRUPT;
return dwWakeupSources;
}
VOID
CSDHCSlotBase::SetVoltage(
DWORD dwVddSetting
)
{
Validate();
UCHAR ucVoltageSelection = SDBUS_POWER_ON;
UCHAR ucOldVoltage;
DEBUGCHK(dwVddSetting & m_dwVddWindows);
if ( dwVddSetting &
(SD_VDD_WINDOW_3_2_TO_3_3 | SD_VDD_WINDOW_3_3_TO_3_4) ) {
ucVoltageSelection |= SDBUS_VOLTAGE_SELECT_3_3V;
}
else if ( dwVddSetting &
(SD_VDD_WINDOW_2_9_TO_3_0 | SD_VDD_WINDOW_3_0_TO_3_1) ) {
ucVoltageSelection |= SDBUS_VOLTAGE_SELECT_3_0V;
}
else if ( dwVddSetting &
(SD_VDD_WINDOW_1_7_TO_1_8 | SD_VDD_WINDOW_1_8_TO_1_9) ) {
ucVoltageSelection |= SDBUS_VOLTAGE_SELECT_1_8V;
}
ucOldVoltage = ReadByte(SDHC_POWER_CONTROL);
if (ucOldVoltage != ucVoltageSelection) {
// SD Bus Power must be initially set to 0 when changing voltages
WriteByte(SDHC_POWER_CONTROL, 0);
WriteByte(SDHC_POWER_CONTROL, ucVoltageSelection);
DEBUGMSG(SDCARD_ZONE_INFO,(
TEXT("CSDHCSlotBase::SetVoltage: Set SDHC_POWER_CONTROL reg = 0x%02x\n"),
ucVoltageSelection));
Sleep(GetPowerSupplyRampUpMs());
}
}
// Set up the controller according to the interface parameters.
VOID
CSDHCSlotBase::SetInterface(
PSD_CARD_INTERFACE_EX pInterface
)
{
PREFAST_DEBUGCHK(pInterface);
Validate();
#if 0
BYTE bHostCtr = 0;
m_f4BitMode = (pInterface->InterfaceModeEx.bit.sd4Bit!=0);
bHostCtr |= (m_f4BitMode?HOSTCTL_DAT_WIDTH:0);
bHostCtr |= (pInterface->InterfaceModeEx.bit.sdHighSpeed!=0?HOSTCTL_HIGH_SPEED:0);
#endif
BYTE hostctl = 0;
if (1 == pInterface->InterfaceModeEx.bit.hsmmc8Bit) {
DEBUGMSG(SDCARD_ZONE_INIT,
(TEXT("SHCSDSlotOptionHandler - Setting for 8 bit mode\n")));
RETAILMSG(1,
(TEXT("[HSMMC] Setting for 8 bit mode , Clock Rate = %d Hz\n"),pInterface->ClockRate));
hostctl |= HOSTCTL_DAT_WIDTH_8BIT;
m_f4BitMode = TRUE;
} else if (SD_INTERFACE_SD_MMC_1BIT == pInterface->InterfaceModeEx.bit.sd4Bit) {
DEBUGMSG(SDCARD_ZONE_INIT,
(TEXT("SHCSDSlotOptionHandler - Setting for 1 bit mode\n")));
RETAILMSG(1,
(TEXT("[HSMMC] Setting for 1 bit mode , Clock Rate = %d Hz\n"),pInterface->ClockRate));
hostctl = 0;
m_f4BitMode = FALSE;
} else if (SD_INTERFACE_SD_4BIT == pInterface->InterfaceModeEx.bit.sd4Bit) {
DEBUGMSG(SDCARD_ZONE_INIT,
(TEXT("SHCSDSlotOptionHandler - Setting for 4 bit mode\n")));
RETAILMSG(1,
(TEXT("[HSMMC] Setting for 4 bit mode , Clock Rate = %d Hz\n"),pInterface->ClockRate));
hostctl |= HOSTCTL_DAT_WIDTH;
m_f4BitMode = TRUE;
}
else {
DEBUGCHK(FALSE);
}
// 2007.09.01 D.Baek
// In the S3C6400, the high-speed enable bit of HOST_CONTROL register must be disabled
// even if the card inserted operates at high-speed mode. This is limited only to the S3C6400.
#if 0
if( (pInterface->ClockRate > 26000000) || (pInterface->InterfaceModeEx.bit.sdHighSpeed!=0) )
{
RETAILMSG(1, (TEXT("[HSMMC] Setting for high speed mode.\n")));
hostctl |= HOSTCTL_HIGH_SPEED;
}
#endif
DEBUGMSG(SDCARD_ZONE_INIT,
(TEXT("SHCSDSlotOptionHandler - Setting Host Control Register %x \n"),bHostCtr));
// WriteByte(SDHC_HOST_CONTROL, bHostCtr);
WriteByte(SDHC_HOST_CONTROL, hostctl);
SetClockRate(&pInterface->ClockRate);
}
VOID
CSDHCSlotBase::SetPowerState(
CEDEVICE_POWER_STATE cpsNew
)
{
DEBUGCHK(VALID_DX(cpsNew));
m_fIsPowerManaged = TRUE;
if (DX_D1_OR_D2(cpsNew)) {
cpsNew = D0;
}
if (m_cpsCurrent != cpsNew) {
SetHardwarePowerState(cpsNew);
}
}
VOID
CSDHCSlotBase::PowerDown(
)
{
Validate();
m_cpsAtPowerDown = m_cpsCurrent;
if (!m_fIsPowerManaged) {
CEDEVICE_POWER_STATE cps;
if (m_bWakeupControl) {
cps = D3;
}
else {
//cps = D4;
cps = (_CEDEVICE_POWER_STATE)D4; // KYS
}
SetHardwarePowerState(cps);
}
BOOL fKeepPower = FALSE;
if (m_fSleepsWithPower || m_cpsCurrent == D0) {
DEBUGCHK(!m_fSleepsWithPower || m_cpsCurrent == D3);
fKeepPower = TRUE;
}
PowerUpDown(FALSE, fKeepPower);
}
VOID
CSDHCSlotBase::PowerUp(
)
{
Validate();
if (!m_fIsPowerManaged) {
SetHardwarePowerState(m_cpsAtPowerDown);
}
else if (m_fSleepsWithPower) {
WORD wIntStatus = ReadWord(SDHC_NORMAL_INT_STATUS);
if (wIntStatus == NORMAL_INT_STATUS_CARD_INT) {
// We woke system through a card interrupt. We need to clear
// this so that the IST will not be signalled.
EnableSDIOInterrupts(FALSE);
m_fPowerUpDisabledInts = TRUE;
}
}
PowerUpDown(TRUE, TRUE);
}
SD_API_STATUS
CSDHCSlotBase::BusRequestHandler( PSD_BUS_REQUEST pRequest)
{
SETFNAME();
SD_API_STATUS status;
PREFAST_DEBUGCHK(pRequest);
Validate();
DEBUGMSG(SDHC_SEND_ZONE, (TEXT("%s CMD:%d\n"), pszFname, pRequest->CommandCode));
RETAILMSG(0, (TEXT("CMD:%d\n"), pRequest->CommandCode));
if (m_pCurrentRequest) { // We have outstand request.
ASSERT(FALSE);
IndicateBusRequestComplete(pRequest, SD_API_STATUS_CANCELED);
m_pCurrentRequest = NULL;
}
if (!m_fCardPresent) {
status= SD_API_STATUS_DEVICE_REMOVED;
}
else {
WORD wIntSignals = ReadWord(SDHC_NORMAL_INT_SIGNAL_ENABLE);
WriteWord(SDHC_NORMAL_INT_SIGNAL_ENABLE,0);
m_fCurrentRequestFastPath = FALSE;
m_pCurrentRequest = pRequest ;
// if no data transfer involved, use FAST PATH
if ((pRequest->SystemFlags & SD_FAST_PATH_AVAILABLE)!=0) { // Fastpath
m_fCurrentRequestFastPath = TRUE;
status = SubmitBusRequestHandler( pRequest );
if( status == SD_API_STATUS_PENDING ) { // Polling for completion.
while (m_pCurrentRequest && (ReadDword(SDHC_PRESENT_STATE) & STATE_CARD_INSERTED)!=0 ) {
HandleInterrupt();
}
status = m_FastPathStatus;
// 08.01.27 by KYS
// Below added code clear before status of fastpath.
m_FastPathStatus = 0;
if (m_pCurrentRequest) {
ASSERT(FALSE);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -