📄 orthexpanalysis4.m
字号:
function OrthExpAnalysis4
% 正交试验的方差分析Variance Analysis of Orthogonal experiment
%
% Author: HUANG Huajiang
% Copyright 2003 UNILAB Research Center,
% East China University of Science and Technology, Shanghai, PRC
% $Revision: 1.0 $ $Date: 2003/07/11 $
%
% [Ref]
%
% DATA: 正交试验方案及结果---最后一列为试验指标(收率),其余是以水平表示的正交试验方案
% NF: 列数
% NL: 水平数
% r: 每个水平有r次试验
clear all; clc
load OrthExpdata
[m,n] = size(DATA);
NF = n-1; % 列数
NL = max(DATA(:,1)) % 水平数
r = 0;
for i=1:m;
if DATA(i,1)==1
r = r+1; % 每个水平有r次试验
end
end
A = DATA(:,1:NF);
Y = DATA(:,NF+1);
% 计算每列相同水平的指标总和K
for i=1:NL % i:水平
for j=1:NF % j:列号
K(i,j) = sum(Y(find(A(:,j)==i)))
end
end
xa = sum(Y)/length(Y)
xT = sum(Y)
P = 1/(NL*r)*xT^2
j=1:NF;
Q(j) = sum(K(:,j).^2)/r
S = Q - P % 各列的平方和
ST = sum(S) % 总平方和
% 计算交互作用的平方和
Sab = S(3) + S(4) % AB: 第3、4列的平方和之和
Sac = S(6) + S(7) % AC: 第6、7列的平方和之和
Sae = S(9) + S(10) % AE: 第9、10列的平方和之和
% 空白列(仅两列)的平方和之和
Sempty = S(12) + S(13)
% 误差e
Se = Sab + Sae + Sempty
% 单因素A,B,C,D,E的均方及其F值
Sav = [S(1:2),S(5),S(11),S(8)]/(NL-1)
F = Sav/(Se/12)
% 交互作用AC的均方及其F值
Sac_av = Sac/4
Fac = Sac_av/(Se/12)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -