📄 vq_lib.c
字号:
/*
2.4 kbps MELP Proposed Federal Standard speech coder
version 1.2
Copyright (c) 1996, Texas Instruments, Inc.
Texas Instruments has intellectual property rights on the MELP
algorithm. The Texas Instruments contact for licensing issues for
commercial and non-government use is William Gordon, Director,
Government Contracts, Texas Instruments Incorporated, Semiconductor
Group (phone 972 480 7442).
*/
/*
vq_lib.c: vector quantization subroutines
*/
#include <stdio.h>
#include <math.h>
#include "spbstd.h"
#include "vq.h"
#include "mat.h"
#include "lpc.h"
#define BIGVAL 1E20
/* VQ_LSPW- compute LSP weighting vector-
Atal's method:
From Atal and Paliwal (ICASSP 1991)
(Note: Paliwal and Atal used w(k)^2(u(k)-u_hat(k))^2,
and we use w(k)(u(k)-u_hat(k))^2 so our weights are different
but the method (i.e. the weighted MSE) is the same.
*/
float *vq_lspw(float *w,float *lsp,float *a,int p)
{
int j;
for(j=0; j < p; j++)
{
w[j] = (float)pow((double)lpc_aejw(a,lsp[j]*M_PI,p),(double)-0.3);
if (j == 8)
w[j] *= 0.64;
else if (j == 9)
w[j] *= 0.16;
}
return(w);
} /* VQ_LSPW */
/*
VQ_MS4-
Tree search multi-stage VQ encoder
Synopsis: vq_ms4(cb,u,u_est,levels,ma,stages,p,w,u_hat,a_indices)
Input:
cb- one dimensional linear codebook array (codebook is structured
as [stages][levels for each stage][p])
u- dimension p, the parameters to be encoded (u[0..p-1])
u_est- dimension p, the estimated parameters or mean (if NULL, assume
estimate is the all zero vector) (u_est[0..p-1])
levels- the number of levels at each stage (levels[0..stages-1])
ma- the tree search size (keep ma candidates from one stage to the
next)
stages- the number of stages of msvq
p- the predictor order
w- the weighting vector (w[0..p-1])
max_inner- the maximum number of times the swapping procedure
in the inner loop can be executed
Output:
u_hat- the reconstruction vector (if non null)
a_indices- the codebook indices (for each stage) a_indices[0..stages-1]
Parameters:
*/
#define P_SWAP(x,y,type) do{type u__p;u__p = x;x = y;y = u__p;}while(0)
float vq_ms4(float *cb, float *u, float *u_est, int *levels, int ma, int stages, int p, float *w, float *u_hat, int *a_indices,int max_inner)
{
float tmp,*u_tmp,*uhatw,uhatw_sq;
float d_cj,d_opt;
float *d,*p_d,*n_d,*p_distortion,*cb_currentstage,*cbp;
float *errors,*p_errors,*n_errors,*p_e;
int i,j,m,s,c,p_max,inner_counter;
int *indices,*p_indices,*n_indices;
int *parents,*p_parents,*n_parents;
/* allocate memory for the current node and
parent node (thus, the factors of two everywhere)
The parents and current nodes are allocated contiguously */
MEM_ALLOC(MALLOC,indices,2*ma*stages,int);
MEM_ALLOC(MALLOC,errors,2*ma*p,float);
MEM_ALLOC(MALLOC,uhatw,p,float);
MEM_ALLOC(MALLOC,d,2*ma,float);
MEM_ALLOC(MALLOC,parents,2*ma,int);
/* initialize memory */
v_zap_int(indices,2*stages*ma);
v_zap_int(parents,2*ma);
/* initialize inner loop counter */
inner_counter = 0;
/* set up memory */
p_indices = &indices[0];
n_indices = &indices[ma*stages];
p_errors = &errors[0];
n_errors = &errors[ma*p];
p_d = &d[0];
n_d = &d[ma];
p_parents = &parents[0];
n_parents = &parents[ma];
/* u_tmp is the input vector (i.e. if u_est is non-null, it
is subtracted off) */
MEM_ALLOC(MALLOC,u_tmp,p+1,float);
(void)v_equ(u_tmp,u,p);
if (u_est)
{
(void)v_sub(u_tmp,u_est,p);
}
for(j=0,tmp=0.0; j < p; j++)
{
tmp += u_tmp[j]*u_tmp[j]*w[j];
}
/* set up inital error vectors (i.e. error vectors = u_tmp) */
for(c=0; c < ma; c++)
{
(void)v_equ(&n_errors[c*p],u_tmp,p);
n_d[c] = tmp;
}
/* no longer need memory so free it here */
MEM_FREE(FREE,u_tmp);
/* codebook pointer is set to point to first stage */
cbp = cb;
/* set m to 1 for the first stage
and loop over all stages */
for(m=1,s=0; s < stages; s++)
{
/* Save the pointer to the beginning of the
current stage. Note: cbp is only incremented in
one spot, and it is incremented all the way through
all the stages. */
cb_currentstage = cbp;
/* set up pointers to the parent and current nodes */
P_SWAP(p_indices,n_indices,int*);
P_SWAP(p_parents,n_parents,int*);
P_SWAP(p_errors,n_errors,float*);
P_SWAP(p_d,n_d,float*);
/* p_max is the pointer to the maximum distortion
node over all candidates. The so-called worst
of the best. */
p_max = 0;
/* set the distortions to a large value */
for(c=0; c < ma; c++)
n_d[c] = BIGVAL;
for(j=0; j < levels[s]; j++)
{
/* compute weighted codebook element, increment codebook pointer */
for(i=0,uhatw_sq=0.0; i < p; i++,cbp++)
{
uhatw_sq += *cbp * (tmp = *cbp * w[i]);
uhatw[i] = -2.0*tmp;
}
/* p_e points to the error vectors and p_distortion
points to the node distortions. Note: the error
vectors are contiguous in memory, as are the distortions.
Thus, the error vector for the 2nd node comes immediately
after the error for the first node. (This saves on
repeated initializations) */
p_e = p_errors;
p_distortion = p_d;
/* iterate over all parent nodes */
for(c=0; c < m; c++)
{
d_cj = *p_distortion++ + uhatw_sq;
for(i=0; i < p; i++)
d_cj += *p_e++ * uhatw[i];
/* determine if d is less than the maximum candidate distortion i.e., is the distortion found better than the so-called
worst of the best */
if (d_cj <= n_d[p_max])
{
/* replace the worst with the values just found */
n_d[p_max] = d_cj;
n_indices[p_max*stages+s] = j;
n_parents[p_max] = c;
/* want to limit the number of times the inner loop
is entered (to reduce the *maximum* complexity) */
if (inner_counter < max_inner)
{
inner_counter++;
if (inner_counter < max_inner)
{
p_max = 0;
/* find the new maximum */
for(i=1; i < ma; i++)
{
if (n_d[i] > n_d[p_max])
p_max = i;
}
}
else /* inner_counter == max_inner */
{
/* The inner loop counter now exceeds the
maximum, and the inner loop will now not
be entered. Instead of quitting the search
or doing something drastic, we simply keep
track of the best candidate (rather than the
M best) by setting p_max to equal the index
of the minimum distortion
i.e. only keep one candidate around
the MINIMUM distortion */
for(i=1; i < ma; i++)
{
if (n_d[i] < n_d[p_max])
p_max = i;
}
}
}
}
} /* for c */
} /* for j */
/* compute the error vectors for each node */
for(c=0; c < ma; c++)
{
/* get the error from the parent node and subtract off
the codebook value */
(void)v_equ(&n_errors[c*p],&p_errors[n_parents[c]*p],p);
(void)v_sub(&n_errors[c*p],&cb_currentstage[n_indices[c*stages+s]*p],p);
/* get the indices that were used for the parent node */
(void)v_equ_int(&n_indices[c*stages],&p_indices[n_parents[c]*stages],s);
}
m = (m*levels[s] > ma) ? ma : m*levels[s];
} /* for s */
/* find the optimum candidate c */
for(i=1,c=0; i < ma; i++)
{
if (n_d[i] < n_d[c])
c = i;
}
d_opt = n_d[c];
if (a_indices)
{
(void)v_equ_int(a_indices,&n_indices[c*stages],stages);
}
if (u_hat)
{
if (u_est)
(void)v_equ(u_hat,u_est,p);
else
(void)v_zap(u_hat,p);
cb_currentstage = cb;
for(s=0; s < stages; s++)
{
(void)v_add(u_hat,&cb_currentstage[n_indices[c*stages+s]*p],p);
cb_currentstage += levels[s]*p;
}
}
MEM_FREE(FREE,parents);
MEM_FREE(FREE,d);
MEM_FREE(FREE,uhatw);
MEM_FREE(FREE,errors);
MEM_FREE(FREE,indices);
return(d_opt);
}
/*
VQ_MSD2-
Tree search multi-stage VQ decoder
Synopsis: vq_msd(cb,u,u_est,a,indices,levels,stages,p,conversion)
Input:
cb- one dimensional linear codebook array (codebook is structured
as [stages][levels for each stage][p])
indices- the codebook indices (for each stage) indices[0..stages-1]
levels- the number of levels (for each stage) levels[0..stages-1]
u_est- dimension p, the estimated parameters or mean (if NULL, assume
estimate is the all zero vector) (u_est[0..p-1])
stages- the number of stages of msvq
p- the predictor order
conversion- the conversion constant (see lpc.h, lpc_conv.c)
Output:
u- dimension p, the decoded parameters (if NULL, use alternate
temporary storage) (u[0..p-1])
a- predictor parameters (a[0..p]), if NULL, don't compute
Returns:
pointer to reconstruction vector (u)
Parameters:
*/
float *vq_msd2(float *cb, float *u, float *u_est, float *a, int *indices, int *levels, int stages, int p, int conversion)
{
float *u_hat,*cb_currentstage;
int i;
/* allocate memory (if required) */
if (u==(float*)NULL)
{
MEM_ALLOC(MALLOC,u_hat,p,float);
}
else
u_hat = u;
/* add estimate on (if non-null), or clear vector */
if (u_est)
{
(void)v_equ(u_hat,u_est,p);
}
else
{
(void)v_zap(u_hat,p);
}
/* add the contribution of each stage */
cb_currentstage = cb;
for(i=0; i < stages; i++)
{
(void)v_add(u_hat,&cb_currentstage[indices[i]*p],p);
cb_currentstage += levels[i]*p;
}
return(u);
}
/* VQ_ENC -
encode vector with full VQ using unweighted Euclidean distance
Synopsis: vq_enc(cb, u, levels, p, u_hat, indices)
Input:
cb- one dimensional linear codebook array
u- dimension p, the parameters to be encoded (u[0..p-1])
levels- the number of levels
p- the predictor order
Output:
u_hat- the reconstruction vector (if non null)
a_indices- the codebook indices (for each stage) a_indices[0..stages-1]
Parameters:
*/
float vq_enc(float *cb, float *u, int levels, int p, float *u_hat, int *indices)
{
int i,j,index;
float d,dmin;
float *p_cb;
/* Search codebook for minimum distance */
index = 0;
dmin = BIGVAL;
p_cb = cb;
for (i = 0; i < levels; i++) {
d = 0.0;
for (j = 0; j < p; j++) {
d += SQR(u[j] - *p_cb);
p_cb++;
}
if (d < dmin) {
dmin = d;
index = i;
}
}
/* Update index and quantized value, and return minimum distance */
*indices = index;
v_equ(u_hat,&cb[p*index],p);
return(dmin);
}
/* VQ_FSW -
compute the weights for Euclidean distance of Fourier harmonics */
void vq_fsw(float *w_fs, int num_harm, float pitch)
{
int j;
float w0;
/* Calculate fundamental frequency */
w0 = TWOPI/pitch;
for(j=0; j < num_harm; j++) {
/* Bark-scale weighting */
w_fs[j] = 117.0 / (25.0 + 75.0*
pow(1.0 + 1.4*SQR(w0*(j+1)/(0.25*PI)),0.69));
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -