📄 fat.c
字号:
break; } /* a parent of the file exists, but not the file itself */ return 0; } fat_close_dir(dd); } return 0;}/** * \ingroup fat_file * Opens a file on a FAT filesystem. * * \param[in] fs The filesystem on which the file to open lies. * \param[in] dir_entry The directory entry of the file to open. * \returns The file handle, or 0 on failure. * \see fat_close_file */struct fat_file_struct* fat_open_file(struct fat_fs_struct* fs, const struct fat_dir_entry_struct* dir_entry){ if(!fs || !dir_entry || (dir_entry->attributes & FAT_ATTRIB_DIR)) return 0;#if USE_DYNAMIC_MEMORY struct fat_file_struct* fd = malloc(sizeof(*fd)); if(!fd) return 0;#else struct fat_file_struct* fd = fat_file_handles; uint8_t i; for(i = 0; i < FAT_FILE_COUNT; ++i) { if(!fd->fs) break; ++fd; } if(i >= FAT_FILE_COUNT) return 0;#endif memcpy(&fd->dir_entry, dir_entry, sizeof(*dir_entry)); fd->fs = fs; fd->pos = 0; fd->pos_cluster = dir_entry->cluster; return fd;}/** * \ingroup fat_file * Closes a file. * * \param[in] fd The file handle of the file to close. * \see fat_open_file */void fat_close_file(struct fat_file_struct* fd){ if(fd)#if USE_DYNAMIC_MEMORY free(fd);#else fd->fs = 0;#endif}/** * \ingroup fat_file * Reads data from a file. * * The data requested is read from the current file location. * * \param[in] fd The file handle of the file from which to read. * \param[out] buffer The buffer into which to write. * \param[in] buffer_len The amount of data to read. * \returns The number of bytes read, 0 on end of file, or -1 on failure. * \see fat_write_file */intptr_t fat_read_file(struct fat_file_struct* fd, uint8_t* buffer, uintptr_t buffer_len){ /* check arguments */ if(!fd || !buffer || buffer_len < 1) return -1; /* determine number of bytes to read */ if(fd->pos + buffer_len > fd->dir_entry.file_size) buffer_len = fd->dir_entry.file_size - fd->pos; if(buffer_len == 0) return 0; uint16_t cluster_size = fd->fs->header.cluster_size; cluster_t cluster_num = fd->pos_cluster; uintptr_t buffer_left = buffer_len; uint16_t first_cluster_offset = (uint16_t) (fd->pos & (cluster_size - 1)); /* find cluster in which to start reading */ if(!cluster_num) { cluster_num = fd->dir_entry.cluster; if(!cluster_num) { if(!fd->pos) return 0; else return -1; } if(fd->pos) { uint32_t pos = fd->pos; while(pos >= cluster_size) { pos -= cluster_size; cluster_num = fat_get_next_cluster(fd->fs, cluster_num); if(!cluster_num) return -1; } } } /* read data */ do { /* calculate data size to copy from cluster */ offset_t cluster_offset = fat_cluster_offset(fd->fs, cluster_num) + first_cluster_offset; uint16_t copy_length = cluster_size - first_cluster_offset; if(copy_length > buffer_left) copy_length = buffer_left; /* read data */ if(!fd->fs->partition->device_read(cluster_offset, buffer, copy_length)) return buffer_len - buffer_left; /* calculate new file position */ buffer += copy_length; buffer_left -= copy_length; fd->pos += copy_length; if(first_cluster_offset + copy_length >= cluster_size) { /* we are on a cluster boundary, so get the next cluster */ if((cluster_num = fat_get_next_cluster(fd->fs, cluster_num))) { first_cluster_offset = 0; } else { fd->pos_cluster = 0; return buffer_len - buffer_left; } } fd->pos_cluster = cluster_num; } while(buffer_left > 0); /* check if we are done */ return buffer_len;}#if DOXYGEN || FAT_WRITE_SUPPORT/** * \ingroup fat_file * Writes data to a file. * * The data is written to the current file location. * * \param[in] fd The file handle of the file to which to write. * \param[in] buffer The buffer from which to read the data to be written. * \param[in] buffer_len The amount of data to write. * \returns The number of bytes written, 0 on disk full, or -1 on failure. * \see fat_read_file */intptr_t fat_write_file(struct fat_file_struct* fd, const uint8_t* buffer, uintptr_t buffer_len){ /* check arguments */ if(!fd || !buffer || buffer_len < 1) return -1; if(fd->pos > fd->dir_entry.file_size) return -1; uint16_t cluster_size = fd->fs->header.cluster_size; cluster_t cluster_num = fd->pos_cluster; uintptr_t buffer_left = buffer_len; uint16_t first_cluster_offset = (uint16_t) (fd->pos & (cluster_size - 1)); /* find cluster in which to start writing */ if(!cluster_num) { cluster_num = fd->dir_entry.cluster; if(!cluster_num) { if(!fd->pos) { /* empty file */ fd->dir_entry.cluster = cluster_num = fat_append_clusters(fd->fs, 0, 1); if(!cluster_num) return -1; } else { return -1; } } if(fd->pos) { uint32_t pos = fd->pos; cluster_t cluster_num_next; while(pos >= cluster_size) { pos -= cluster_size; cluster_num_next = fat_get_next_cluster(fd->fs, cluster_num); if(!cluster_num_next && pos == 0) /* the file exactly ends on a cluster boundary, and we append to it */ cluster_num_next = fat_append_clusters(fd->fs, cluster_num, 1); if(!cluster_num_next) return -1; cluster_num = cluster_num_next; } } } /* write data */ do { /* calculate data size to write to cluster */ offset_t cluster_offset = fat_cluster_offset(fd->fs, cluster_num) + first_cluster_offset; uint16_t write_length = cluster_size - first_cluster_offset; if(write_length > buffer_left) write_length = buffer_left; /* write data which fits into the current cluster */ if(!fd->fs->partition->device_write(cluster_offset, buffer, write_length)) break; /* calculate new file position */ buffer += write_length; buffer_left -= write_length; fd->pos += write_length; if(first_cluster_offset + write_length >= cluster_size) { /* we are on a cluster boundary, so get the next cluster */ cluster_t cluster_num_next = fat_get_next_cluster(fd->fs, cluster_num); if(!cluster_num_next && buffer_left > 0) /* we reached the last cluster, append a new one */ cluster_num_next = fat_append_clusters(fd->fs, cluster_num, 1); if(!cluster_num_next) { fd->pos_cluster = 0; break; } cluster_num = cluster_num_next; first_cluster_offset = 0; } fd->pos_cluster = cluster_num; } while(buffer_left > 0); /* check if we are done */ /* update directory entry */ if(fd->pos > fd->dir_entry.file_size) { uint32_t size_old = fd->dir_entry.file_size; /* update file size */ fd->dir_entry.file_size = fd->pos; /* write directory entry */ if(!fat_write_dir_entry(fd->fs, &fd->dir_entry)) { /* We do not return an error here since we actually wrote * some data to disk. So we calculate the amount of data * we wrote to disk and which lies within the old file size. */ buffer_left = fd->pos - size_old; fd->pos = size_old; } } return buffer_len - buffer_left;}#endif/** * \ingroup fat_file * Repositions the read/write file offset. * * Changes the file offset where the next call to fat_read_file() * or fat_write_file() starts reading/writing. * * If the new offset is beyond the end of the file, fat_resize_file() * is implicitly called, i.e. the file is expanded. * * The new offset can be given in different ways determined by * the \c whence parameter: * - \b FAT_SEEK_SET: \c *offset is relative to the beginning of the file. * - \b FAT_SEEK_CUR: \c *offset is relative to the current file position. * - \b FAT_SEEK_END: \c *offset is relative to the end of the file. * * The resulting absolute offset is written to the location the \c offset * parameter points to. * * \param[in] fd The file decriptor of the file on which to seek. * \param[in,out] offset A pointer to the new offset, as affected by the \c whence * parameter. The function writes the new absolute offset * to this location before it returns. * \param[in] whence Affects the way \c offset is interpreted, see above. * \returns 0 on failure, 1 on success. */uint8_t fat_seek_file(struct fat_file_struct* fd, int32_t* offset, uint8_t whence){ if(!fd || !offset) return 0; uint32_t new_pos = fd->pos; switch(whence) { case FAT_SEEK_SET: new_pos = *offset; break; case FAT_SEEK_CUR: new_pos += *offset; break; case FAT_SEEK_END: new_pos = fd->dir_entry.file_size + *offset; break; default: return 0; } if(new_pos > fd->dir_entry.file_size#if FAT_WRITE_SUPPORT && !fat_resize_file(fd, new_pos)#endif ) return 0; fd->pos = new_pos; fd->pos_cluster = 0; *offset = (int32_t) new_pos; return 1;}#if DOXYGEN || FAT_WRITE_SUPPORT/** * \ingroup fat_file * Resizes a file to have a specific size. * * Enlarges or shrinks the file pointed to by the file descriptor to have * exactly the specified size. * * If the file is truncated, all bytes having an equal or larger offset * than the given size are lost. If the file is expanded, the additional * bytes are allocated. * * \note Please be aware that this function just allocates or deallocates disk * space, it does not explicitely clear it. To avoid data leakage, this * must be done manually. * * \param[in] fd The file decriptor of the file which to resize. * \param[in] size The new size of the file. * \returns 0 on failure, 1 on success. */uint8_t fat_resize_file(struct fat_file_struct* fd, uint32_t size){ if(!fd) return 0; cluster_t cluster_num = fd->dir_entry.cluster; uint16_t cluster_size = fd->fs->header.cluster_size; uint32_t size_new = size; do { if(cluster_num == 0 && size_new == 0) /* the file stays empty */ break; /* seek to the next cluster as long as we need the space */ while(size_new > cluster_size) { /* get next cluster of file */ cluster_t cluster_num_next = fat_get_next_cluster(fd->fs, cluster_num); if(cluster_num_next) { cluster_num = cluster_num_next; size_new -= cluster_size; } else { break; } } if(size_new > cluster_size || cluster_num == 0) { /* Allocate new cluster chain and append * it to the existing one, if available. */ cluster_t cluster_count = (size_new + cluster_size - 1) / cluster_size; cluster_t cluster_new_chain = fat_append_clusters(fd->fs, cluster_num, cluster_count); if(!cluster_new_chain) return 0; if(!cluster_num) { cluster_num = cluster_new_chain; fd->dir_entry.cluster = cluster_num; } } /* write new directory entry */ fd->dir_entry.file_size = size; if(size == 0) fd->dir_entry.cluster = 0; if(!fat_write_dir_entry(fd->fs, &fd->dir_entry)) return 0; if(size == 0) { /* free all clusters of file */ fat_free_clusters(fd->fs, cluster_num); } else if(size_new <= cluster_size)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -