📄 rls.m
字号:
function [W,E] = rls(x,d,nord,lambda)%RLS Recursive Least Squares.%--- %USAGE [W,E] = rls(x,d,nord,lambda)%% x : input data to the adaptive filter.% d : desired output% nord : number of filter coefficients% lambda : exponential forgetting factor%% The output matrix W contains filter coefficients.% - The n'th row contains the filter coefficients at time n% - The m'th column contains the m'th filter coeff vs. time.% - The output vector E contains the error sequence versus time.%% see also LMS and NLMS%%---------------------------------------------------------------% copyright 1996, by M.H. Hayes. For use with the book % "Statistical Digital Signal Processing and Modeling"% (John Wiley & Sons, 1996).%---------------------------------------------------------------delta=0.001;X=convm(x,nord);[M,N] = size(X);if nargin < 4, lambda = 1.0; endP=eye(N)/delta;W(1,:)=zeros(1,N);for k=2:M-nord+1; z=P*X(k,:)'; g=z/(lambda+X(k,:)*z); alpha=d(k)-X(k,:)*W(k-1,:).'; W(k,:)=W(k-1,:)+alpha*g.'; P=(P-g*z.')/lambda;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -