⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 min_norm.m

📁 solution for the Statistical modelling for digital signal processing by hayes
💻 M
字号:
function Px = min_norm(x,p,M)%MIN_NORM Frequency estimation using the minimum norm algorithm.%--------%USAGE	Px = min_norm(x,p,M)%%	The input sequence x is assumed to consist of p complex%	exponentials in white noise.  The frequencies of the%	complex exponentials and the variance of the white noise%	are estimated using the minimum norm algorithm.  %%	x : input sequence%	p : Number of complex exponential in x%	M : Size of the autocorrelation matrix to use in%	      estimating the complex exponential frequencies%%	The frequency estimates are found from the peaks of the%	pseudospectrum Px.%%  see also PHD, EV, and MUSIC%%---------------------------------------------------------------% copyright 1996, by M.H. Hayes.  For use with the book % "Statistical Digital Signal Processing and Modeling"% (John Wiley & Sons, 1996).%---------------------------------------------------------------%   x   = x(:);   if N<p+1, error('Specified size of R is too small'), end   R=covar(x,N);   [v,d]=eig(R);   [y,i]=sort(diag(d));   for j=1:N-p       V=[V,v(:,i(j))];       end;   a=V*V(1,:)';   Px=-20*log10(abs(fft(a,1024)));   end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -